These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 26801669)

  • 21. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio.
    Titov DV; Cracan V; Goodman RP; Peng J; Grabarek Z; Mootha VK
    Science; 2016 Apr; 352(6282):231-5. PubMed ID: 27124460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30.
    Zhang L; Xu Q; Zhan S; Li Y; Lin H; Sun S; Sha L; Hu K; Guan X; Shen Y
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1175-84. PubMed ID: 23666479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning and characterization of a ribitol dehydrogenase from Zymomonas mobilis.
    Moon HJ; Tiwari M; Jeya M; Lee JK
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):205-14. PubMed ID: 20127234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase.
    Prabhakar P; Laboy JI; Wang J; Budker T; Din ZZ; Chobanian M; Fahien LA
    Arch Biochem Biophys; 1998 Dec; 360(2):195-205. PubMed ID: 9851831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A water-forming NADH oxidase from Lactobacillus pentosus suitable for the regeneration of synthetic biomimetic cofactors.
    Nowak C; Beer B; Pick A; Roth T; Lommes P; Sieber V
    Front Microbiol; 2015; 6():957. PubMed ID: 26441891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New approaches to NAD(P)H regeneration in the biosynthesis systems.
    Han L; Liang B
    World J Microbiol Biotechnol; 2018 Sep; 34(10):141. PubMed ID: 30203299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NADH dehydrogenase-like behavior of nitrogen-doped graphene and its application in NAD(+)-dependent dehydrogenase biosensing.
    Gai PP; Zhao CE; Wang Y; Abdel-Halim ES; Zhang JR; Zhu JJ
    Biosens Bioelectron; 2014 Dec; 62():170-6. PubMed ID: 24999994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of alkyl hydroperoxide reductase and two water-forming NADH oxidases from Bacillus cereus ATCC 14579.
    Wang L; Chong H; Jiang R
    Appl Microbiol Biotechnol; 2012 Dec; 96(5):1265-73. PubMed ID: 22311647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biochemical characterization and substrate profiling of a new NADH-dependent enoate reductase from Lactobacillus casei.
    Gao X; Ren J; Wu Q; Zhu D
    Enzyme Microb Technol; 2012 Jun; 51(1):26-34. PubMed ID: 22579387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic and chemical mechanism of Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate isomeroreductase.
    Argyrou A; Blanchard JS
    Biochemistry; 2004 Apr; 43(14):4375-84. PubMed ID: 15065882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning, expression, and characterization of coenzyme-B12-dependent diol dehydratase from Lactobacillus diolivorans.
    Wei X; Meng X; Chen Y; Wei Y; Du L; Huang R
    Biotechnol Lett; 2014 Jan; 36(1):159-65. PubMed ID: 24078133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning, Expression, and Characterization of budC Gene Encoding meso-2,3-Butanediol Dehydrogenase from Bacillus licheniformis.
    Xu GC; Bian YQ; Han RZ; Dong JJ; Ni Y
    Appl Biochem Biotechnol; 2016 Feb; 178(3):604-17. PubMed ID: 26494135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes.
    Cui K; Ma Q; Lu AY; Yang CS
    Arch Biochem Biophys; 1995 Nov; 323(2):265-73. PubMed ID: 7487087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering NAD+ availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production.
    Zhou YJ; Yang W; Wang L; Zhu Z; Zhang S; Zhao ZK
    Microb Cell Fact; 2013 Nov; 12():103. PubMed ID: 24209782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NADH oxidase from Lactobacillus reuteri: A versatile enzyme for oxidized cofactor regeneration.
    Gao H; Li J; Sivakumar D; Kim TS; Patel SKS; Kalia VC; Kim IW; Zhang YW; Lee JK
    Int J Biol Macromol; 2019 Feb; 123():629-636. PubMed ID: 30447371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature.
    Maenaka Y; Suenobu T; Fukuzumi S
    J Am Chem Soc; 2012 Jan; 134(1):367-74. PubMed ID: 22122737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens.
    Slatner M; Nidetzky B; Kulbe KD
    Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioinformatic analysis of dihydrofolate reductase predicted in the genome sequence of Lactobacillus pentosus KCA1.
    Anukam KC; Oge U
    Niger J Physiol Sci; 2014 Jun; 29(1):47-53. PubMed ID: 26196566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals.
    Xiao Z; Lv C; Gao C; Qin J; Ma C; Liu Z; Liu P; Li L; Xu P
    PLoS One; 2010 Jan; 5(1):e8860. PubMed ID: 20126645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.