These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
537 related articles for article (PubMed ID: 26801915)
21. Selenite bioreduction with concomitant green synthesis of selenium nanoparticles by a selenite resistant EPS and siderophore producing terrestrial bacterium. Yadav P; Pandey S; Dubey SK Biometals; 2023 Oct; 36(5):1027-1045. PubMed ID: 37119424 [TBL] [Abstract][Full Text] [Related]
22. Novel mechanisms of selenate and selenite reduction in the obligate aerobic bacterium Comamonas testosteroni S44. Tan Y; Wang Y; Wang Y; Xu D; Huang Y; Wang D; Wang G; Rensing C; Zheng S J Hazard Mater; 2018 Oct; 359():129-138. PubMed ID: 30014908 [TBL] [Abstract][Full Text] [Related]
23. Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. Presentato A; Piacenza E; Anikovskiy M; Cappelletti M; Zannoni D; Turner RJ N Biotechnol; 2018 Mar; 41():1-8. PubMed ID: 29174512 [TBL] [Abstract][Full Text] [Related]
24. Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium. Espinosa-Ortiz EJ; Gonzalez-Gil G; Saikaly PE; van Hullebusch ED; Lens PN Appl Microbiol Biotechnol; 2015 Mar; 99(5):2405-18. PubMed ID: 25341399 [TBL] [Abstract][Full Text] [Related]
25. Multi-pathways-mediated mechanisms of selenite reduction and elemental selenium nanoparticles biogenesis in the yeast-like fungus Aureobasidium melanogenum I15. Xue SJ; Zhang XT; Li XC; Zhao FY; Shu X; Jiang WW; Zhang JY J Hazard Mater; 2024 May; 470():134204. PubMed ID: 38579586 [TBL] [Abstract][Full Text] [Related]
26. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Lampis S; Zonaro E; Bertolini C; Bernardi P; Butler CS; Vallini G Microb Cell Fact; 2014 Mar; 13(1):35. PubMed ID: 24606965 [TBL] [Abstract][Full Text] [Related]
27. Bacillus safensis JG-B5T affects the fate of selenium by extracellular production of colloidally less stable selenium nanoparticles. Fischer S; Krause T; Lederer F; Merroun ML; Shevchenko A; Hübner R; Firkala T; Stumpf T; Jordan N; Jain R J Hazard Mater; 2020 Feb; 384():121146. PubMed ID: 31771888 [TBL] [Abstract][Full Text] [Related]
28. Selenium Uptake and Biotransformation in Yu Y; Liu Z; Luo LY; Fu PN; Wang Q; Li HF J Agric Food Chem; 2019 Nov; 67(45):12408-12418. PubMed ID: 31644287 [TBL] [Abstract][Full Text] [Related]
29. Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393. Xu C; Qiao L; Guo Y; Ma L; Cheng Y Carbohydr Polym; 2018 Sep; 195():576-585. PubMed ID: 29805014 [TBL] [Abstract][Full Text] [Related]
30. Selenopeptides and elemental selenium in Thunbergia alata after exposure to selenite: quantification method for elemental selenium. Aborode FA; Raab A; Foster S; Lombi E; Maher W; Krupp EM; Feldmann J Metallomics; 2015 Jul; 7(7):1056-66. PubMed ID: 25747595 [TBL] [Abstract][Full Text] [Related]
31. Difference between selenite and selenate in selenium transformation and the regulation of cadmium accumulation in Brassica chinensis. Yu Y; Zhuang Z; Luo LY; Wang YQ; Li HF Environ Sci Pollut Res Int; 2019 Aug; 26(24):24532-24541. PubMed ID: 31236863 [TBL] [Abstract][Full Text] [Related]
32. Selenite reduction by the rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterisation. Tugarova AV; Mamchenkova PV; Khanadeev VA; Kamnev AA N Biotechnol; 2020 Sep; 58():17-24. PubMed ID: 32184193 [TBL] [Abstract][Full Text] [Related]
33. Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions. Staicu LC; Ackerson CJ; Cornelis P; Ye L; Berendsen RL; Hunter WJ; Noblitt SD; Henry CS; Cappa JJ; Montenieri RL; Wong AO; Musilova L; Sura-de Jong M; van Hullebusch ED; Lens PN; Reynolds RJ; Pilon-Smits EA J Appl Microbiol; 2015 Aug; 119(2):400-10. PubMed ID: 25968181 [TBL] [Abstract][Full Text] [Related]
34. Amorphous structure and crystal stability determine the bioavailability of selenium nanoparticles. Li K; Li J; Zhang S; Zhang J; Xu Q; Xu Z; Guo Y J Hazard Mater; 2024 Mar; 465():133287. PubMed ID: 38141318 [TBL] [Abstract][Full Text] [Related]
35. [Differences of selenium uptake pattern of pakchoi and the possible mechanism when amended with selenate and selenite]. Guo L; Man N; Liang DL; Xie JY; Liu JJ Huan Jing Ke Xue; 2013 Aug; 34(8):3272-9. PubMed ID: 24191579 [TBL] [Abstract][Full Text] [Related]
36. Sorption and speciation of selenium in boreal forest soil. Söderlund M; Virkanen J; Holgersson S; Lehto J J Environ Radioact; 2016 Nov; 164():220-231. PubMed ID: 27521902 [TBL] [Abstract][Full Text] [Related]
37. Preparation, characteristics and cytotoxicity of green synthesized selenium nanoparticles using Paenibacillus motobuensis LY5201 isolated from the local specialty food of longevity area. Long Q; Cui LK; He SB; Sun J; Chen QZ; Bao HD; Liang TY; Liang BY; Cui LY Sci Rep; 2023 Jan; 13(1):53. PubMed ID: 36593245 [TBL] [Abstract][Full Text] [Related]
39. Reduction of selenite to selenium nanoparticles by highly selenite-tolerant bacteria isolated from seleniferous soil. Ge M; Zhou S; Li D; Song D; Yang S; Xu M J Hazard Mater; 2024 Jul; 472():134491. PubMed ID: 38703686 [TBL] [Abstract][Full Text] [Related]
40. Metalloid Reductase Activity Modified by a Fused Se Butz ZJ; Borgognoni K; Nemeth R; Nilsson ZN; Ackerson CJ ACS Chem Biol; 2020 Jul; 15(7):1987-1995. PubMed ID: 32568515 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]