These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26801957)

  • 1. ELASPIC web-server: proteome-wide structure-based prediction of mutation effects on protein stability and binding affinity.
    Witvliet DK; Strokach A; Giraldo-Forero AF; Teyra J; Colak R; Kim PM
    Bioinformatics; 2016 May; 32(10):1589-91. PubMed ID: 26801957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ELASPIC2 (EL2): Combining Contextualized Language Models and Graph Neural Networks to Predict Effects of Mutations.
    Strokach A; Lu TY; Kim PM
    J Mol Biol; 2021 May; 433(11):166810. PubMed ID: 33450251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining structural modeling with ensemble machine learning to accurately predict protein fold stability and binding affinity effects upon mutation.
    Berliner N; Teyra J; Colak R; Garcia Lopez S; Kim PM
    PLoS One; 2014; 9(9):e107353. PubMed ID: 25243403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the Effect of Mutations on Protein Folding and Protein-Protein Interactions.
    Strokach A; Corbi-Verge C; Teyra J; Kim PM
    Methods Mol Biol; 2019; 1851():1-17. PubMed ID: 30298389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and flexible coarse-grained prediction of protein folding routes using ensemble modeling and evolutionary sequence variation.
    Becerra D; Butyaev A; Waldispühl J
    Bioinformatics; 2020 Mar; 36(5):1420-1428. PubMed ID: 31584628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting changes in protein stability caused by mutation using sequence-and structure-based methods in a CAGI5 blind challenge.
    Strokach A; Corbi-Verge C; Kim PM
    Hum Mutat; 2019 Sep; 40(9):1414-1423. PubMed ID: 31243847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DBSI server: DNA binding site identifier.
    Sukumar S; Zhu X; Ericksen SS; Mitchell JC
    Bioinformatics; 2016 Sep; 32(18):2853-5. PubMed ID: 27259543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STRUM: structure-based prediction of protein stability changes upon single-point mutation.
    Quan L; Lv Q; Zhang Y
    Bioinformatics; 2016 Oct; 32(19):2936-46. PubMed ID: 27318206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FRODOCK 2.0: fast protein-protein docking server.
    Ramírez-Aportela E; López-Blanco JR; Chacón P
    Bioinformatics; 2016 Aug; 32(15):2386-8. PubMed ID: 27153583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A3D database: structure-based predictions of protein aggregation for the human proteome.
    Badaczewska-Dawid AE; Garcia-Pardo J; Kuriata A; Pujols J; Ventura S; Kmiecik S
    Bioinformatics; 2022 May; 38(11):3121-3123. PubMed ID: 35445695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pStab: prediction of stable mutants, unfolding curves, stability maps and protein electrostatic frustration.
    Gopi S; Devanshu D; Krishna P; Naganathan AN
    Bioinformatics; 2018 Mar; 34(5):875-877. PubMed ID: 29092002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MetalPredator: a web server to predict iron-sulfur cluster binding proteomes.
    Valasatava Y; Rosato A; Banci L; Andreini C
    Bioinformatics; 2016 Sep; 32(18):2850-2. PubMed ID: 27273670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GalaxyGemini: a web server for protein homo-oligomer structure prediction based on similarity.
    Lee H; Park H; Ko J; Seok C
    Bioinformatics; 2013 Apr; 29(8):1078-80. PubMed ID: 23413437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain-domain interaction prediction.
    Xu D; Jaroszewski L; Li Z; Godzik A
    Bioinformatics; 2015 Jul; 31(13):2098-105. PubMed ID: 25701568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The PPI3D web server for searching, analyzing and modeling protein-protein interactions in the context of 3D structures.
    Dapkunas J; Timinskas A; Olechnovic K; Margelevicius M; Diciunas R; Venclovas C
    Bioinformatics; 2017 Mar; 33(6):935-937. PubMed ID: 28011769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MODBASE: a database of annotated comparative protein structure models and associated resources.
    Pieper U; Eswar N; Davis FP; Braberg H; Madhusudhan MS; Rossi A; Marti-Renom M; Karchin R; Webb BM; Eramian D; Shen MY; Kelly L; Melo F; Sali A
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D291-5. PubMed ID: 16381869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SpeeDB: fast structural protein searches.
    Robillard DE; Mpangase PT; Hazelhurst S; Dehne F
    Bioinformatics; 2015 Sep; 31(18):3027-34. PubMed ID: 25979473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAAMBE-SEQ: a sequence-based method for predicting mutation effect on protein-protein binding affinity.
    Li G; Pahari S; Murthy AK; Liang S; Fragoza R; Yu H; Alexov E
    Bioinformatics; 2021 May; 37(7):992-999. PubMed ID: 32866236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels.
    Choi Y; Chan AP
    Bioinformatics; 2015 Aug; 31(16):2745-7. PubMed ID: 25851949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.