BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26802007)

  • 21. Effect of T- and C-loop mutations on the Herbaspirillum seropedicae GlnB protein in nitrogen signalling.
    Bonatto AC; Souza EM; Pedrosa FO; Yates MG; Benelli EM
    Res Microbiol; 2005; 156(5-6):634-40. PubMed ID: 15950123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nicotinamide mononucleotide synthetase is the key enzyme for an alternative route of NAD biosynthesis in Francisella tularensis.
    Sorci L; Martynowski D; Rodionov DA; Eyobo Y; Zogaj X; Klose KE; Nikolaev EV; Magni G; Zhang H; Osterman AL
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3083-8. PubMed ID: 19204287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase.
    Bieganowski P; Pace HC; Brenner C
    J Biol Chem; 2003 Aug; 278(35):33049-55. PubMed ID: 12771147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA-seq analyses reveal insights into the function of respiratory nitrate reductase of the diazotroph Herbaspirillum seropedicae.
    Bonato P; Batista MB; Camilios-Neto D; Pankievicz VC; Tadra-Sfeir MZ; Monteiro RA; Pedrosa FO; Souza EM; Chubatsu LS; Wassem R; Rigo LU
    Environ Microbiol; 2016 Sep; 18(8):2677-88. PubMed ID: 27322548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structures of Escherichia coli NAD synthetase with substrates and products reveal mechanistic rearrangements.
    Jauch R; Humm A; Huber R; Wahl MC
    J Biol Chem; 2005 Apr; 280(15):15131-40. PubMed ID: 15699042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stabilization of active-site loops in NH3-dependent NAD+ synthetase from Bacillus subtilis.
    Devedjiev Y; Symersky J; Singh R; Jedrzejas M; Brouillette C; Brouillette W; Muccio D; Chattopadhyay D; DeLucas L
    Acta Crystallogr D Biol Crystallogr; 2001 Jun; 57(Pt 6):806-12. PubMed ID: 11375500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simple and rapid method for determining nicotinamide adenine dinucleotide synthetase activity by high-performance liquid chromatography.
    Sakai T; Morita Y; Araki T; Masuyama Y
    J Chromatogr B Biomed Sci Appl; 1997 Dec; 704(1-2):77-81. PubMed ID: 9518180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different ways to transport ammonia in human and Mycobacterium tuberculosis NAD
    Chuenchor W; Doukov TI; Chang KT; Resto M; Yun CS; Gerratana B
    Nat Commun; 2020 Jan; 11(1):16. PubMed ID: 31911602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative genomics of NAD biosynthesis in cyanobacteria.
    Gerdes SY; Kurnasov OV; Shatalin K; Polanuyer B; Sloutsky R; Vonstein V; Overbeek R; Osterman AL
    J Bacteriol; 2006 Apr; 188(8):3012-23. PubMed ID: 16585762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glutamine amidotransferase activity of NAD+ synthetase from Mycobacterium tuberculosis depends on an amino-terminal nitrilase domain.
    Bellinzoni M; Buroni S; Pasca MR; Guglierame P; Arcesi F; De Rossi E; Riccardi G
    Res Microbiol; 2005 Mar; 156(2):173-7. PubMed ID: 15748981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An enzymatic cycling assay for nicotinic acid adenine dinucleotide phosphate using NAD synthetase.
    Yamaguchi F; Ohshima T; Sakuraba H
    Anal Biochem; 2007 May; 364(2):97-103. PubMed ID: 17395143
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The reported human NADsyn2 is ammonia-dependent NAD synthetase from a pseudomonad.
    Bieganowski P; Brenner C
    J Biol Chem; 2003 Aug; 278(35):33056-9. PubMed ID: 12777395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of active site coupling in glutamine-dependent NAD(+) synthetase.
    LaRonde-LeBlanc N; Resto M; Gerratana B
    Nat Struct Mol Biol; 2009 Apr; 16(4):421-9. PubMed ID: 19270703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Herbaspirillum seropedicae expresses non-phosphorylative pathways for D-xylose catabolism.
    Malán AK; Tuleski T; Catalán AI; de Souza EM; Batista S
    Appl Microbiol Biotechnol; 2021 Oct; 105(19):7339-7352. PubMed ID: 34499201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Enzymes related with NAD synthesis promote conversion of 1,4-butanediol to 4-hydroxybutyrate].
    Zhang X; Chen G
    Sheng Wu Gong Cheng Xue Bao; 2011 Dec; 27(12):1749-54. PubMed ID: 22506415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the phosphorylase activity of GH3 enzymes: A β-N-acetylglucosaminidase from Herbaspirillum seropedicae SmR1 and a glucosidase from Saccharopolyspora erythraea.
    Ducatti DR; Carroll MA; Jakeman DL
    Carbohydr Res; 2016 Nov; 435():106-112. PubMed ID: 27744113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron depletion affects nitrogenase activity and expression of nifH and nifA genes in Herbaspirillum seropedicae.
    Rosconi F; Souza EM; Pedrosa FO; Platero RA; González C; González M; Batista S; Gill PR; Fabiano ER
    FEMS Microbiol Lett; 2006 May; 258(2):214-9. PubMed ID: 16640576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Microbial NAD synthetase and its inhibitors--a review].
    Bi J; Wang H; Xie J
    Wei Sheng Wu Xue Bao; 2011 Mar; 51(3):305-12. PubMed ID: 21604544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Rice endogenous nitrogen fixing and growth promoting bacterium Herbaspirillum seropedicae DX35].
    Wang X; Cao Y; Tang X; Ma X; Gao J; Zhang X
    Wei Sheng Wu Xue Bao; 2014 Mar; 54(3):292-8. PubMed ID: 24984521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteomic analysis of Herbaspirillum seropedicae reveals ammonium-induced AmtB-dependent membrane sequestration of PII proteins.
    Huergo LF; Noindorf L; Gimenes C; Lemgruber RS; Cordellini DF; Falarz LJ; Cruz LM; Monteiro RA; Pedrosa FO; Chubatsu LS; Souza EM; Steffens MB
    FEMS Microbiol Lett; 2010 Jul; 308(1):40-7. PubMed ID: 20487022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.