BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26802072)

  • 1. Pseudomonas putida KT2440 markerless gene deletion using a combination of λ Red recombineering and Cre/loxP site-specific recombination.
    Luo X; Yang Y; Ling W; Zhuang H; Li Q; Shang G
    FEMS Microbiol Lett; 2016 Feb; 363(4):. PubMed ID: 26802072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombineering and I-SceI-mediated Pseudomonas putida KT2440 scarless gene deletion.
    Chen Z; Ling W; Shang G
    FEMS Microbiol Lett; 2016 Nov; 363(21):. PubMed ID: 27765807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing.
    Wu Z; Chen Z; Gao X; Li J; Shang G
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2783-2795. PubMed ID: 30762073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of lambda Red-mediated recombineering and Cre/lox for generation of markerless chromosomal deletions in avian pathogenic Escherichia coli.
    Tuntufye HN; Goddeeris BM
    FEMS Microbiol Lett; 2011 Dec; 325(2):140-7. PubMed ID: 22029745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An upp-based markerless gene replacement method for genome reduction and metabolic pathway engineering in Pseudomonas mendocina NK-01 and Pseudomonas putida KT2440.
    Wang Y; Zhang C; Gong T; Zuo Z; Zhao F; Fan X; Yang C; Song C
    J Microbiol Methods; 2015 Jun; 113():27-33. PubMed ID: 25828098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protocols for RecET-based markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida.
    Choi KR; Lee SY
    Microb Biotechnol; 2020 Jan; 13(1):199-209. PubMed ID: 30761747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Integration and expression of polyphosphate kinase gene in Pseudomonas putida].
    Du HW; Wu J; Xiao L; Yang LY; Jiang LJ; Wang XL
    Huan Jing Ke Xue; 2009 Oct; 30(10):3011-5. PubMed ID: 19968123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new site-specific recombinase-mediated system for targeted multiple genomic deletions employing chimeric loxP and mrpS sites.
    Warth L; Altenbuchner J
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):6845-56. PubMed ID: 23536006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida.
    Choi KR; Cho JS; Cho IJ; Park D; Lee SY
    Metab Eng; 2018 May; 47():463-474. PubMed ID: 29751103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Construction of Large Genomic Deletion in Agrobacterium tumefaciens by Combination of Cre/loxP System and Triple Recombineering.
    Liu Z; Xie Y; Zhang X; Hu X; Li Y; Ding X; Xia L; Hu S
    Curr Microbiol; 2016 Apr; 72(4):465-72. PubMed ID: 26742770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of a markerless multiple-gene deletion method based on Cre/loxP mutant system for Bacillus pumilus.
    Guan ZB; Wang KQ; Shui Y; Liao XR
    J Basic Microbiol; 2017 Dec; 57(12):1065-1068. PubMed ID: 29052235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida.
    Cook TB; Rand JM; Nurani W; Courtney DK; Liu SA; Pfleger BF
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):517-527. PubMed ID: 29299733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application of Cre-loxP(*) system in constructing the markerless double-gene-deletion strain in Streptococcus mutans].
    Yu DN; Zhang WJ; Peng C; Han YZ; Ren ZM
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2011 Feb; 46(2):102-6. PubMed ID: 21426780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cre/lox-based multiple markerless gene disruption in the genome of the extreme thermophile Thermus thermophilus.
    Togawa Y; Nunoshiba T; Hiratsu K
    Mol Genet Genomics; 2018 Feb; 293(1):277-291. PubMed ID: 28840320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system.
    Sun J; Wang Q; Jiang Y; Wen Z; Yang L; Wu J; Yang S
    Microb Cell Fact; 2018 Mar; 17(1):41. PubMed ID: 29534717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Markerless Deletion System for Escherichia coli Using Short Homologous Sequences and Positive-Negative Selectable Cassette.
    Chen F; Jiang J; OuYang H; Ma T; Peng Z; Ma Y; Chen X; Pang D; Lin S; Ren L
    Appl Biochem Biotechnol; 2015 Jul; 176(5):1472-81. PubMed ID: 25957274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Editing in Model Strain
    Yang YJ; Singh RP; Lan X; Zhang CS; Li YZ; Li YQ; Sheng DH
    Biomolecules; 2018 Nov; 8(4):. PubMed ID: 30404219
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibitory effect of Pseudomonas putida nitrogen-related phosphotransferase system on conjugative transfer of IncP-9 plasmid from Escherichia coli.
    Inoue K; Miyazaki R; Ohtsubo Y; Nagata Y; Tsuda M
    FEMS Microbiol Lett; 2013 Aug; 345(2):102-9. PubMed ID: 23721112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440.
    Plaggenborg R; Overhage J; Steinbüchel A; Priefert H
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):528-35. PubMed ID: 12764569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil.
    Zuo Z; Gong T; Che Y; Liu R; Xu P; Jiang H; Qiao C; Song C; Yang C
    Biodegradation; 2015 Jun; 26(3):223-33. PubMed ID: 25917649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.