These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 26802251)

  • 21. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A; Dathe M; Blume A
    Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poly-l-lysines and poly-l-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane.
    Reuter M; Schwieger C; Meister A; Karlsson G; Blume A
    Biophys Chem; 2009 Sep; 144(1-2):27-37. PubMed ID: 19560854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isothermal calorimetry study of the interactions of type I antifreeze proteins with a lipid model membrane.
    Kun H; Mastai Y
    Protein Pept Lett; 2010 Jun; 17(6):739-43. PubMed ID: 19995337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of octyl-beta-thioglucopyranoside with lipid membranes.
    Wenk MR; Seelig J
    Biophys J; 1997 Nov; 73(5):2565-74. PubMed ID: 9370450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binding Affinity of Inorganic Mercury and Cadmium to Biomimetic Erythrocyte Membranes.
    Hassanin M; Kerek E; Chiu M; Anikovskiy M; Prenner EJ
    J Phys Chem B; 2016 Dec; 120(50):12872-12882. PubMed ID: 27958740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of quinine with model lipid membranes of different compositions.
    Porcar I; Codoñer A; Gómez CM; Abad C; Campos A
    J Pharm Sci; 2003 Jan; 92(1):45-57. PubMed ID: 12486681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interplay of entropy and enthalpy in peptide binding to zwitterionic phospholipid membranes as revealed from membrane thinning.
    Su CJ; Lee MT; Liao KF; Shih O; Jeng US
    Phys Chem Chem Phys; 2018 Oct; 20(42):26830-26836. PubMed ID: 30137074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microcin J25 membrane interaction: selectivity toward gel phase.
    Dupuy F; Morero R
    Biochim Biophys Acta; 2011 Jun; 1808(6):1764-71. PubMed ID: 21376012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes.
    Tan A; Ziegler A; Steinbauer B; Seelig J
    Biophys J; 2002 Sep; 83(3):1547-56. PubMed ID: 12202379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solubilization of negatively charged DPPC/DPPG liposomes by bile salts.
    Hildebrand A; Beyer K; Neubert R; Garidel P; Blume A
    J Colloid Interface Sci; 2004 Nov; 279(2):559-71. PubMed ID: 15464825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding of chitosan to phospholipid vesicles studied with isothermal titration calorimetry.
    Mertins O; Dimova R
    Langmuir; 2011 May; 27(9):5506-15. PubMed ID: 21466162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dicynthaurin (ala) monomer interaction with phospholipid bilayers studied by fluorescence leakage and isothermal titration calorimetry.
    Wen S; Majerowicz M; Waring A; Bringezu F
    J Phys Chem B; 2007 Jun; 111(22):6280-7. PubMed ID: 17500551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption of Ca2+ and La3+ to bilayer membranes: measurement of the adsorption enthalpy and binding constant with titration calorimetry.
    Lehrmann R; Seelig J
    Biochim Biophys Acta; 1994 Jan; 1189(1):89-95. PubMed ID: 8305464
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of antiinflammatory drugs with EPC liposomes: calorimetric study in a broad concentration range.
    Matos C; Lima JL; Reis S; Lopes A; Bastos M
    Biophys J; 2004 Feb; 86(2):946-54. PubMed ID: 14747330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Univalent ions in phospholipid model membranes: thermodynamic and hydration aspects].
    Vashchenko OV; Ermak IuL; Lisetskiĭ LN
    Biofizika; 2013; 58(4):663-73. PubMed ID: 24455886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of the neuronal marker dye FM1-43 with lipid membranes. Thermodynamics and lipid ordering.
    Schote U; Seelig J
    Biochim Biophys Acta; 1998 Dec; 1415(1):135-46. PubMed ID: 9858712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics and thermodynamics of chlorpromazine interaction with lipid bilayers: effect of charge and cholesterol.
    Martins PT; Velazquez-Campoy A; Vaz WL; Cardoso RM; Valério J; Moreno MJ
    J Am Chem Soc; 2012 Mar; 134(9):4184-95. PubMed ID: 22296285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sulpiride, Amisulpride, Thioridazine, and Olanzapine: Interaction with Model Membranes. Thermodynamic and Structural Aspects.
    Skrobecki P; Chmielińska A; Bonarek P; Stepien P; Wisniewska-Becker A; Dziedzicka-Wasylewska M; Polit A
    ACS Chem Neurosci; 2017 Jul; 8(7):1543-1553. PubMed ID: 28375612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.