These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26802273)

  • 1. Finding robust descriptive features for the characterization of the coarsening dynamics of three dimensional whey protein foams.
    Dittmann J; Eggert A; Lambertus M; Dombrowski J; Rack A; Zabler S
    J Colloid Interface Sci; 2016 Apr; 467():148-157. PubMed ID: 26802273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth laws and self-similar growth regimes of coarsening two-dimensional foams: transition from dry to wet limits.
    Fortuna I; Thomas GL; de Almeida RM; Graner F
    Phys Rev Lett; 2012 Jun; 108(24):248301. PubMed ID: 23004337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarsening dynamics of three-dimensional levitated foams: From wet to dry.
    Isert N; Maret G; Aegerter CM
    Eur Phys J E Soft Matter; 2013 Oct; 36(10):116. PubMed ID: 24136181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bubble statistics and coarsening dynamics for quasi-two-dimensional foams with increasing liquid content.
    Roth AE; Jones CD; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042304. PubMed ID: 23679411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of foams from the breakdown of the phase field crystal model.
    Guttenberg N; Goldenfeld N; Dantzig J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):065301. PubMed ID: 20866468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An accurate von Neumann's law for three-dimensional foams.
    Hilgenfeldt S; Kraynik AM; Koehler SA; Stone HA
    Phys Rev Lett; 2001 Mar; 86(12):2685-8. PubMed ID: 11290011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimentally testing a generalized coarsening model for individual bubbles in quasi-two-dimensional wet foams.
    Chieco AT; Durian DJ
    Phys Rev E; 2021 Jan; 103(1-1):012610. PubMed ID: 33601566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coarsening and mechanics in the bubble model for wet foams.
    Khakalo K; Baumgarten K; Tighe BP; Puisto A
    Phys Rev E; 2018 Jul; 98(1-1):012607. PubMed ID: 30110853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Border-crossing model for the diffusive coarsening of two-dimensional and quasi-two-dimensional wet foams.
    Schimming CD; Durian DJ
    Phys Rev E; 2017 Sep; 96(3-1):032805. PubMed ID: 29346872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and coarsening at the surface of a dry three-dimensional aqueous foam.
    Roth AE; Chen BG; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062302. PubMed ID: 24483439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial properties, film dynamics and bulk rheology: A multi-scale approach to dairy protein foams.
    Audebert A; Saint-Jalmes A; Beaufils S; Lechevalier V; Le Floch-Fouéré C; Cox S; Leconte N; Pezennec S
    J Colloid Interface Sci; 2019 Apr; 542():222-232. PubMed ID: 30753945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Ostwald ripening by using surfactants with high surface modulus.
    Tcholakova S; Mitrinova Z; Golemanov K; Denkov ND; Vethamuthu M; Ananthapadmanabhan KP
    Langmuir; 2011 Dec; 27(24):14807-19. PubMed ID: 22059389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical bubble size distributions in coarsening wet liquid foams.
    Galvani N; Pasquet M; Mukherjee A; Requier A; Cohen-Addad S; Pitois O; Höhler R; Rio E; Salonen A; Durian DJ; Langevin D
    Proc Natl Acad Sci U S A; 2023 Sep; 120(38):e2306551120. PubMed ID: 37708201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coarsening transitions of wet liquid foams under microgravity conditions.
    Pasquet M; Galvani N; Requier A; Cohen-Addad S; Höhler R; Pitois O; Rio E; Salonen A; Langevin D
    Soft Matter; 2023 Aug; 19(33):6267-6279. PubMed ID: 37551883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarsening of a two-dimensional foam on a dome.
    Roth AE; Jones CD; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021402. PubMed ID: 23005758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stray-field NMR diffusion q-space diffraction imaging of monodisperse coarsening foams.
    Smith K; Burbidge A; Apperley D; Hodgkinson P; Markwell FA; Topgaard D; Hughes E
    J Colloid Interface Sci; 2016 Aug; 476():20-28. PubMed ID: 27179175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Investigation of Foam Coarsening Dynamics in Porous Media at High-Pressure and High-Temperature Conditions.
    Yu W; Zhou X; Kanj MY
    Langmuir; 2022 Mar; 38(9):2895-2905. PubMed ID: 35192368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the influence of surfactant on the coarsening of aqueous foams.
    Briceño-Ahumada Z; Langevin D
    Adv Colloid Interface Sci; 2017 Jun; 244():124-131. PubMed ID: 26687804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of film permeability in 2D foams.
    Forel E; Langevin D; Rio E
    Eur Phys J E Soft Matter; 2019 Jun; 42(6):75. PubMed ID: 31197676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusually stable liquid foams.
    Rio E; Drenckhan W; Salonen A; Langevin D
    Adv Colloid Interface Sci; 2014 Mar; 205():74-86. PubMed ID: 24342735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.