These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26802352)

  • 1. Water Footprint of crop productions: A review.
    Lovarelli D; Bacenetti J; Fiala M
    Sci Total Environ; 2016 Apr; 548-549():236-251. PubMed ID: 26802352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of crop production, trade, and consumption from the perspective of water resources: a case study of the Hetao irrigation district, China, for 1960-2010.
    Liu J; Sun S; Wu P; Wang Y; Zhao X
    Sci Total Environ; 2015 Feb; 505():1174-81. PubMed ID: 25461115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "More crop per drop": Exploring India's cereal water use since 2005.
    Kayatz B; Harris F; Hillier J; Adhya T; Dalin C; Nayak D; Green RF; Smith P; Dangour AD
    Sci Total Environ; 2019 Jul; 673():207-217. PubMed ID: 30986680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.
    Wang YB; Wu PT; Engel BA; Sun SK
    Sci Total Environ; 2014 Nov; 497-498():1-9. PubMed ID: 25112819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field-based experimental water footprint study of sunflower growth in a semi-arid region of China.
    Qin L; Jin Y; Duan P; He H
    J Sci Food Agric; 2016 Jul; 96(9):3266-73. PubMed ID: 27004979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of Landsat-8 data for the estimation of carrot and maize crop water footprint under the arid climate of Saudi Arabia.
    Madugundu R; Al-Gaadi KA; Tola E; Hassaballa AA; Kayad AG
    PLoS One; 2018; 13(2):e0192830. PubMed ID: 29432446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The virtual water content of major grain crops and virtual water flows between regions in China.
    Sun SK; Wu PT; Wang YB; Zhao XN
    J Sci Food Agric; 2013 Apr; 93(6):1427-37. PubMed ID: 23174764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008).
    Zhuo L; Mekonnen MM; Hoekstra AY
    Water Res; 2016 May; 94():73-85. PubMed ID: 26938494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The water footprint of sweeteners and bio-ethanol.
    Gerbens-Leenes W; Hoekstra AY
    Environ Int; 2012 Apr; 40():202-211. PubMed ID: 21802146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Egypt: Space to grow.
    Sarant L
    Nature; 2017 Apr; 544(7651):S14-S16. PubMed ID: 28445452
    [No Abstract]   [Full Text] [Related]  

  • 11. Identification of key sectors of water resource utilization in China from the perspective of water footprint.
    Deng G; Yue X; Miao L; Lu F
    PLoS One; 2020; 15(6):e0234307. PubMed ID: 32569328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive analysis of water resources from the perspective of water footprint and water ecological footprint: a case study from Anyang City, China.
    Ma X; Jiao S
    Environ Sci Pollut Res Int; 2023 Jan; 30(1):2086-2102. PubMed ID: 35930150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the impact of crop and food production on the water environment--using sugar as a model.
    Hess T; Aldaya M; Fawell J; Franceschini H; Ober E; Schaub R; Schulze-Aurich J
    J Sci Food Agric; 2014 Jan; 94(1):2-8. PubMed ID: 24038095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China.
    Cao X; Wang Y; Wu P; Zhao X; Wang J
    Sci Total Environ; 2015 Oct; 529():10-20. PubMed ID: 26005745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Projected water consumption in future global agriculture: scenarios and related impacts.
    Pfister S; Bayer P; Koehler A; Hellweg S
    Sci Total Environ; 2011 Sep; 409(20):4206-16. PubMed ID: 21840571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water footprint: applying the water footprint assessment method to Australian agriculture.
    Hossain I; Imteaz MA; Khastagir A
    J Sci Food Agric; 2021 Aug; 101(10):4090-4098. PubMed ID: 33368286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental impacts of water use in global crop production: hotspots and trade-offs with land use.
    Pfister S; Bayer P; Koehler A; Hellweg S
    Environ Sci Technol; 2011 Jul; 45(13):5761-8. PubMed ID: 21644578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.
    Ye Q; Li Y; Zhuo L; Zhang W; Xiong W; Wang C; Wang P
    Water Res; 2018 Feb; 129():264-276. PubMed ID: 29156391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Carbon footprints of major staple grain crops production in three provinces of Northeast China during 2004-2013.].
    Huang XM; Chen CQ; Chen MZ; Song ZW; Deng AX; Zhang J; Zheng CY; Zhang WJ
    Ying Yong Sheng Tai Xue Bao; 2016 Oct; 27(10):3307-3315. PubMed ID: 29726158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a regionally sensitive water-productivity indicator to identify sustainable practices for sugarcane growers.
    Brauman KA; Viart N
    Integr Environ Assess Manag; 2016 Oct; 12(4):811-20. PubMed ID: 26631903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.