These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26802362)

  • 1. Carbon dioxide emission from bamboo culms.
    Zachariah EJ; Sabulal B; Nair DN; Johnson AJ; Kumar CS
    Plant Biol (Stuttg); 2016 May; 18(3):400-5. PubMed ID: 26802362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Regeneration of Phyllostachys heteroclada and its relations with rhizome carbon- and nitrogen metabolism].
    Wang XH; Huang Y; Guo QR; Zhou ZJ
    Ying Yong Sheng Tai Xue Bao; 2010 Aug; 21(8):1953-8. PubMed ID: 21043100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determinants of water circulation in a woody bamboo species: afternoon use and night-time recharge of culm water storage.
    Yang SJ; Zhang YJ; Goldstein G; Sun M; Ma RY; Cao KF
    Tree Physiol; 2015 Sep; 35(9):964-74. PubMed ID: 26232783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure gradients along whole culms and leaf sheaths, and other aspects of humidity-induced gas transport in Phragmites australis.
    Afreen F; Zobayed SM; Armstrong J; Armstrong W
    J Exp Bot; 2007; 58(7):1651-62. PubMed ID: 17351250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon storage and sequestration potential in aboveground biomass of bamboos in North East India.
    Devi AS; Singh KS
    Sci Rep; 2021 Jan; 11(1):837. PubMed ID: 33437001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic variation of phytolith carbon sequestration in bamboos.
    Li B; Song Z; Li Z; Wang H; Gui R; Song R
    Sci Rep; 2014 Apr; 4():4710. PubMed ID: 24736571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.
    Moreira D; Pires JCM
    Bioresour Technol; 2016 Sep; 215():371-379. PubMed ID: 27005790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allometric equations and carbon stocks assessment for
    Kaam R; Tchamba M; Nfornkah BN; Chimi Djomo C
    Heliyon; 2023 Nov; 9(11):e21251. PubMed ID: 37954369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachy pubescens).
    Yen TM
    Bot Stud; 2016 Dec; 57(1):10. PubMed ID: 28597419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial distribution and variability of carbon storage in different sympodial bamboo species in China.
    Teng J; Xiang T; Huang Z; Wu J; Jiang P; Meng C; Li Y; Fuhrmann JJ
    J Environ Manage; 2016 Mar; 168():46-52. PubMed ID: 26696605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First proteome study of sporadic flowering in bamboo species (Bambusa vulgaris and Dendrocalamus manipureanus) reveal the boom is associated with stress and mobile genetic elements.
    Louis B; Waikhom SD; Goyari S; Jose RC; Roy P; Talukdar NC
    Gene; 2015 Dec; 574(2):255-64. PubMed ID: 26260016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of genes related to the development of bamboo rhizome bud.
    Wang K; Peng H; Lin E; Jin Q; Hua X; Yao S; Bian H; Han N; Pan J; Wang J; Deng M; Zhu M
    J Exp Bot; 2010; 61(2):551-61. PubMed ID: 19965904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water Use Patterns of Four Tropical Bamboo Species Assessed with Sap Flux Measurements.
    Mei T; Fang D; Röll A; Niu F; Hendrayanto ; Hölscher D
    Front Plant Sci; 2015; 6():1202. PubMed ID: 26779233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sources of carbon supporting the fast growth of developing immature moso bamboo (
    Wang S; Epron D; Kobayashi K; Takanashi S; Dannoura M
    AoB Plants; 2023 Jul; 15(4):plad046. PubMed ID: 37497441
    [No Abstract]   [Full Text] [Related]  

  • 15. Sympodial bamboo species differ in carbon bio-sequestration and stocks within phytoliths of leaf litters and living leaves.
    Xiang T; Ying Y; Teng J; Huang Z; Wu J; Meng C; Jiang P; Tang C; Li J; Zheng R
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19257-65. PubMed ID: 27364486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study.
    Drake BG
    Glob Chang Biol; 2014 Nov; 20(11):3329-43. PubMed ID: 24820033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Net carbon dioxide losses of northern ecosystems in response to autumn warming.
    Piao S; Ciais P; Friedlingstein P; Peylin P; Reichstein M; Luyssaert S; Margolis H; Fang J; Barr A; Chen A; Grelle A; Hollinger DY; Laurila T; Lindroth A; Richardson AD; Vesala T
    Nature; 2008 Jan; 451(7174):49-52. PubMed ID: 18172494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.
    Cheah WY; Ling TC; Juan JC; Lee DJ; Chang JS; Show PL
    Bioresour Technol; 2016 Sep; 215():346-356. PubMed ID: 27090405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns in CH4 and CO2 concentrations across boreal rivers: Major drivers and implications for fluvial greenhouse emissions under climate change scenarios.
    Campeau A; Del Giorgio PA
    Glob Chang Biol; 2014 Apr; 20(4):1075-88. PubMed ID: 24273093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Young bamboo culm: Potential food as source of fiber and starch.
    Felisberto MHF; Miyake PSE; Beraldo AL; Clerici MTPS
    Food Res Int; 2017 Nov; 101():96-102. PubMed ID: 28941702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.