These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 26802366)

  • 21. Myosin light-chain phosphorylation and potentiation of dynamic function in mouse fast muscle.
    Xeni J; Gittings WB; Caterini D; Huang J; Houston ME; Grange RW; Vandenboom R
    Pflugers Arch; 2011 Aug; 462(2):349-58. PubMed ID: 21499697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contractile properties of single motor units in human toe extensors assessed by intraneural motor axon stimulation.
    Macefield VG; Fuglevand AJ; Bigland-Ritchie B
    J Neurophysiol; 1996 Jun; 75(6):2509-19. PubMed ID: 8793760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catchlike property in human adductor pollicis muscle.
    Fortuna R; Vaz MA; Herzog W
    J Electromyogr Kinesiol; 2012 Apr; 22(2):228-33. PubMed ID: 22033309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tetanic force potentiation of mouse fast muscle is shortening speed dependent.
    Gittings W; Huang J; Vandenboom R
    J Muscle Res Cell Motil; 2012 Oct; 33(5):359-68. PubMed ID: 23054096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myosin light chain phosphorylation and posttetanic potentiation in fatigued skeletal muscle.
    Tubman LA; MacIntosh BR; Maki WA
    Pflugers Arch; 1996 Apr; 431(6):882-7. PubMed ID: 8927505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attenuation of myosin light chain phosphorylation and posttetanic potentiation in atrophied skeletal muscle.
    Tubman LA; Rassier DE; MacIntosh BR
    Pflugers Arch; 1997 Nov; 434(6):848-51. PubMed ID: 9306021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myosin phosphorylation enhances rate of force development in fast-twitch skeletal muscle.
    Vandenboom R; Grange RW; Houston ME
    Am J Physiol; 1995 Mar; 268(3 Pt 1):C596-603. PubMed ID: 7900767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of length on the catchlike property of human quadriceps femoris muscle.
    Lee SC; Gerdom ML; Binder-Macleod SA
    Phys Ther; 1999 Aug; 79(8):738-48. PubMed ID: 10440660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene Transfer of Skeletal Muscle-Type Myosin Light Chain Kinase via Adeno-Associated Virus 6 Improves Muscle Functions in an Amyotrophic Lateral Sclerosis Mouse Model.
    Oya R; Tsukamoto O; Hitsumoto T; Nakahara N; Okamoto C; Matsuoka K; Kato H; Inohara H; Takashima S
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic costs of force generation for constant-frequency and catchlike-inducing electrical stimulation in human tibialis anterior muscle.
    Ratkevicius A; Quistorff B
    Muscle Nerve; 2002 Mar; 25(3):419-26. PubMed ID: 11870720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular and whole muscle studies of activity dependent potentiation.
    MacIntosh BR
    Adv Exp Med Biol; 2010; 682():315-42. PubMed ID: 20824534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contractile properties of slow and fast skeletal muscles from protease activated receptor-1 null mice.
    Sitparan PK; Pagel CN; Pinniger GJ; Yoo HJ; Mackie EJ; Bakker AJ
    Muscle Nerve; 2014 Dec; 50(6):991-8. PubMed ID: 24692104
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Myosin phosphorylation and force potentiation in skeletal muscle: evidence from animal models.
    Vandenboom R; Gittings W; Smith IC; Grange RW; Stull JT
    J Muscle Res Cell Motil; 2013 Dec; 34(5-6):317-32. PubMed ID: 24162313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myosin light chain phosphorylation-dephosphorylation in mammalian skeletal muscle.
    Manning DR; Stull JT
    Am J Physiol; 1982 Mar; 242(3):C234-41. PubMed ID: 7065172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of a catchlike property of human skeletal muscle to reduce fatigue.
    Binder-Macleod SA; Barker CB
    Muscle Nerve; 1991 Sep; 14(9):850-7. PubMed ID: 1922180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorylation of myosin and twitch potentiation in fatigued skeletal muscle.
    Vandenboom R; Houston ME
    Can J Physiol Pharmacol; 1996 Dec; 74(12):1315-21. PubMed ID: 9047041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Staircase but not posttetanic potentiation in rat muscle after spinal cord hemisection.
    MacIntosh BR; Smith MJ; Rassier DE
    Muscle Nerve; 2008 Nov; 38(5):1455-1465. PubMed ID: 18932208
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Threshold for force potentiation associated with skeletal myosin phosphorylation.
    Vandenboom R; Grange RW; Houston ME
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1456-62. PubMed ID: 8279509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels.
    Riquelme MA; Cea LA; Vega JL; Boric MP; Monyer H; Bennett MV; Frank M; Willecke K; Sáez JC
    Neuropharmacology; 2013 Dec; 75():594-603. PubMed ID: 23583931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myosin light chain phosphorylation and tension potentiation in mouse skeletal muscle.
    Palmer BM; Moore RL
    Am J Physiol; 1989 Nov; 257(5 Pt 1):C1012-9. PubMed ID: 2596580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.