These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 26802366)

  • 41. [Influence of tenotomy on posttetanic responses of the rat fast and slow muscle].
    Arutiunian RS; Zhabko EP
    Ross Fiziol Zh Im I M Sechenova; 2011 Aug; 97(8):781-94. PubMed ID: 21961302
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vivo roles for myosin phosphatase targeting subunit-1 phosphorylation sites T694 and T852 in bladder smooth muscle contraction.
    Chen CP; Chen X; Qiao YN; Wang P; He WQ; Zhang CH; Zhao W; Gao YQ; Chen C; Tao T; Sun J; Wang Y; Gao N; Kamm KE; Stull JT; Zhu MS
    J Physiol; 2015 Feb; 593(3):681-700. PubMed ID: 25433069
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Catchlike-inducing train activation of human muscle during isotonic contractions: burst modulation.
    Lee SC; Becker CN; Binder-Macleod SA
    J Appl Physiol (1985); 1999 Nov; 87(5):1758-67. PubMed ID: 10562620
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Catchlike property of rat diaphragm: subsequent train frequency effects in variable-train stimulation.
    van Lunteren E; Sankey CB
    J Appl Physiol (1985); 2000 Feb; 88(2):586-98. PubMed ID: 10658027
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phosphorylation of rabbit skeletal muscle myosin in situ.
    Moore RL; Houston ME; Iwamoto GA; Stull JT
    J Cell Physiol; 1985 Nov; 125(2):301-5. PubMed ID: 4055914
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of the ballistic contractile responses generated during microstimulation of single human motor axons with brief irregular and regular stimuli.
    Leitch M; Macefield VG
    Muscle Nerve; 2017 Aug; 56(2):292-297. PubMed ID: 27862051
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Effect of neurogenic inactivity on posttetanic responses of rat fast muscle].
    Arutiunian RS; Kuznetsov SV
    Zh Evol Biokhim Fiziol; 2010; 46(1):66-73. PubMed ID: 20297672
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Augmentation of the contraction force of human thenar muscles by and during brief discharge trains.
    Howells J; Trevillion L; Jankelowitz S; Burke D
    Muscle Nerve; 2006 Mar; 33(3):384-92. PubMed ID: 16435342
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphorylation of myosin light chain in skeletal and smooth muscles.
    Stull JT; Silver PJ; Miller JR; Blumenthal DK; Botterman BR; Klug GA
    Fed Proc; 1983 Jan; 42(1):21-6. PubMed ID: 6293879
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of temperature on post-tetanic potentiation in human dorsiflexor muscles.
    Gossen ER; Allingham K; Sale DG
    Can J Physiol Pharmacol; 2001 Jan; 79(1):49-58. PubMed ID: 11201501
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Variable-frequency train stimulation of canine latissimus dorsi muscle during shortening contractions.
    George DT; Binder-Macleod SA; Delosso TN; Santamore WP
    J Appl Physiol (1985); 1997 Sep; 83(3):994-1001. PubMed ID: 9292488
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Myosin light chain phosphorylation in fast and slow skeletal muscles in situ.
    Moore RL; Stull JT
    Am J Physiol; 1984 Nov; 247(5 Pt 1):C462-71. PubMed ID: 6548609
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fast-to-Slow Transition of Skeletal Muscle Contractile Function and Corresponding Changes in Myosin Heavy and Light Chain Formation in the R6/2 Mouse Model of Huntington's Disease.
    Hering T; Braubach P; Landwehrmeyer GB; Lindenberg KS; Melzer W
    PLoS One; 2016; 11(11):e0166106. PubMed ID: 27820862
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Myosin phosphorylation augments force-displacement and force-velocity relationships of mouse fast muscle.
    Grange RW; Cory CR; Vandenboom R; Houston ME
    Am J Physiol; 1995 Sep; 269(3 Pt 1):C713-24. PubMed ID: 7573402
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles.
    Bozzo C; Spolaore B; Toniolo L; Stevens L; Bastide B; Cieniewski-Bernard C; Fontana A; Mounier Y; Reggiani C
    FEBS J; 2005 Nov; 272(22):5771-85. PubMed ID: 16279942
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Altered excitation-contraction coupling with skeletal muscle specific FKBP12 deficiency.
    Tang W; Ingalls CP; Durham WJ; Snider J; Reid MB; Wu G; Matzuk MM; Hamilton SL
    FASEB J; 2004 Oct; 18(13):1597-9. PubMed ID: 15289441
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
    Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H
    J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of high-frequency initial pulses and posttetanic potentiation on power output of skeletal muscle.
    Abbate F; Sargeant AJ; Verdijk PW; de Haan A
    J Appl Physiol (1985); 2000 Jan; 88(1):35-40. PubMed ID: 10642359
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of adrenaline on the post-tetanic potentiation in mouse skeletal muscle.
    Decostre V; Gillis JM; Gailly P
    J Muscle Res Cell Motil; 2000 Apr; 21(3):247-54. PubMed ID: 10952172
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuro-muscular function in the wobbler murine model of primary motor neuronopathy.
    Broch-Lips M; Pedersen TH; Riisager A; Schmitt-John T; Nielsen OB
    Exp Neurol; 2013 Oct; 248():406-15. PubMed ID: 23872513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.