BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26802430)

  • 1. Network-Based Analysis of eQTL Data to Prioritize Driver Mutations.
    De Maeyer D; Weytjens B; De Raedt L; Marchal K
    Genome Biol Evol; 2016 Jan; 8(3):481-94. PubMed ID: 26802430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EPSILON: an eQTL prioritization framework using similarity measures derived from local networks.
    Verbeke LP; Cloots L; Demeester P; Fostier J; Marchal K
    Bioinformatics; 2013 May; 29(10):1308-16. PubMed ID: 23595663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integromic analysis of genetic variation and gene expression identifies networks for cardiovascular disease phenotypes.
    Yao C; Chen BH; Joehanes R; Otlu B; Zhang X; Liu C; Huan T; Tastan O; Cupples LA; Meigs JB; Fox CS; Freedman JE; Courchesne P; O'Donnell CJ; Munson PJ; Keles S; Levy D
    Circulation; 2015 Feb; 131(6):536-49. PubMed ID: 25533967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations.
    Swings T; Weytjens B; Schalck T; Bonte C; Verstraeten N; Michiels J; Marchal K
    Mol Biol Evol; 2017 Nov; 34(11):2927-2943. PubMed ID: 28961727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring regulation in tissues with eQTL networks.
    Fagny M; Paulson JN; Kuijjer ML; Sonawane AR; Chen CY; Lopes-Ramos CM; Glass K; Quackenbush J; Platig J
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):E7841-E7850. PubMed ID: 28851834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PheNetic: network-based interpretation of molecular profiling data.
    De Maeyer D; Weytjens B; Renkens J; De Raedt L; Marchal K
    Nucleic Acids Res; 2015 Jul; 43(W1):W244-50. PubMed ID: 25878035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing directed gene regulatory network by only gene expression data.
    Zhang L; Feng XK; Ng YK; Li SC
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):430. PubMed ID: 27556418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of common regulators of genes in co-expression networks affecting muscle and meat properties.
    Ponsuksili S; Siengdee P; Du Y; Trakooljul N; Murani E; Schwerin M; Wimmers K
    PLoS One; 2015; 10(4):e0123678. PubMed ID: 25875247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene co-expression network connectivity is an important determinant of selective constraint.
    Mähler N; Wang J; Terebieniec BK; Ingvarsson PK; Street NR; Hvidsten TR
    PLoS Genet; 2017 Apr; 13(4):e1006402. PubMed ID: 28406900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncovering association networks through an eQTL analysis involving human miRNAs and lincRNAs.
    Branco PR; de Araújo GS; Barrera J; Suarez-Kurtz G; de Souza SJ
    Sci Rep; 2018 Oct; 8(1):15050. PubMed ID: 30301969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations.
    Logsdon BA; Mezey J
    PLoS Comput Biol; 2010 Dec; 6(12):e1001014. PubMed ID: 21152011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
    Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M
    Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inference of SNP-gene regulatory networks by integrating gene expressions and genetic perturbations.
    Kim DC; Wang J; Liu C; Gao J
    Biomed Res Int; 2014; 2014():629697. PubMed ID: 25136606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci.
    Ju JH; Shenoy SA; Crystal RG; Mezey JG
    PLoS Comput Biol; 2017 May; 13(5):e1005537. PubMed ID: 28505156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of mutated subnetworks associated with clinical data in cancer.
    Vandin F; Clay P; Upfal E; Raphael BJ
    Pac Symp Biocomput; 2012; ():55-66. PubMed ID: 22174262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and interpretation of expression quantitative trait loci (eQTL).
    Michaelson JJ; Loguercio S; Beyer A
    Methods; 2009 Jul; 48(3):265-76. PubMed ID: 19303049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AtMAD: Arabidopsis thaliana multi-omics association database.
    Lan Y; Sun R; Ouyang J; Ding W; Kim MJ; Wu J; Li Y; Shi T
    Nucleic Acids Res; 2021 Jan; 49(D1):D1445-D1451. PubMed ID: 33219693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpreting Functional Impact of Genetic Variations by Network QTL for Genotype-Phenotype Association Study.
    Yuan K; Zeng T; Chen L
    Front Cell Dev Biol; 2021; 9():720321. PubMed ID: 35155440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IAMBEE: a web-service for the identification of adaptive pathways from parallel evolved clonal populations.
    Perez-Romero CA; Weytjens B; Decap D; Swings T; Michiels J; De Maeyer D; Marchal K
    Nucleic Acids Res; 2019 Jul; 47(W1):W151-W157. PubMed ID: 31127271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connectivity in eQTL networks dictates reproducibility and genomic properties.
    Gaynor SM; Fagny M; Lin X; Platig J; Quackenbush J
    Cell Rep Methods; 2022 May; 2(5):100218. PubMed ID: 35637906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.