These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26802487)

  • 1. Nano and microcarriers to improve stem cell behaviour for neuroregenerative medicine strategies: Application to Huntington's disease.
    André EM; Passirani C; Seijo B; Sanchez A; Montero-Menei CN
    Biomaterials; 2016 Mar; 83():347-62. PubMed ID: 26802487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of stem cells in regenerative medicine for Parkinson's and Huntington's Diseases.
    Lescaudron L; Naveilhan P; Neveu I
    Curr Med Chem; 2012; 19(35):6018-35. PubMed ID: 22963567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of GABAergic phenotype in a neural stem cell line for transplantation in an excitotoxic model of Huntington's disease.
    Bosch M; Pineda JR; Suñol C; Petriz J; Cattaneo E; Alberch J; Canals JM
    Exp Neurol; 2004 Nov; 190(1):42-58. PubMed ID: 15473979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regenerative medicine in Huntington's disease: current status on fetal grafts and prospects for the use of pluripotent stem cell.
    Bachoud-Lévi AC; Perrier AL
    Rev Neurol (Paris); 2014 Dec; 170(12):749-62. PubMed ID: 25459124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomaterials for Engineering Stem Cell Responses.
    Kerativitayanan P; Carrow JK; Gaharwar AK
    Adv Healthc Mater; 2015 Aug; 4(11):1600-27. PubMed ID: 26010739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pluripotent stem cell-derived neurons for transplantation in Huntington's disease.
    Li M; Rosser AE
    Prog Brain Res; 2017; 230():263-281. PubMed ID: 28552232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair.
    Shafiq M; Jung Y; Kim SH
    Biomaterials; 2016 Jun; 90():85-115. PubMed ID: 27016619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical control of stem cell fate and developmental potential.
    Lyssiotis CA; Lairson LL; Boitano AE; Wurdak H; Zhu S; Schultz PG
    Angew Chem Int Ed Engl; 2011 Jan; 50(1):200-42. PubMed ID: 21184400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington's disease.
    Moraes L; Vasconcelos-dos-Santos A; Santana FC; Godoy MA; Rosado-de-Castro PH; Jasmin ; Azevedo-Pereira RL; Cintra WM; Gasparetto EL; Santiago MF; Mendez-Otero R
    Stem Cell Res; 2012 Sep; 9(2):143-55. PubMed ID: 22742973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic potential of human adipose-derived stem cells in neurological disorders.
    Chang KA; Lee JH; Suh YH
    J Pharmacol Sci; 2014; 126(4):293-301. PubMed ID: 25409785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stem cell therapy and cellular engineering for treatment of neuronal dysfunction in Huntington's disease.
    Choi KA; Hwang I; Park HS; Oh SI; Kang S; Hong S
    Biotechnol J; 2014 Jul; 9(7):882-94. PubMed ID: 24827816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stem cells: a promising source for vascular regenerative medicine.
    Rammal H; Harmouch C; Lataillade JJ; Laurent-Maquin D; Labrude P; Menu P; Kerdjoudj H
    Stem Cells Dev; 2014 Dec; 23(24):2931-49. PubMed ID: 25167472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential of alternate sources of cells for neural grafting in Parkinson's and Huntington's disease.
    Drouin-Ouellet J
    Neurodegener Dis Manag; 2014; 4(4):297-307. PubMed ID: 25313986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional cells cultured on microcarriers for use in regenerative medicine research.
    Sun LY; Lin SZ; Li YS; Harn HJ; Chiou TW
    Cell Transplant; 2011; 20(1):49-62. PubMed ID: 20887678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem Cells for Huntington's Disease (SC4HD): An International Consortium to Facilitate Stem Cell-Based Therapy for Huntington's Disease.
    SC4HD Consortium
    J Huntingtons Dis; 2021; 10(2):221-226. PubMed ID: 33814456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Overview of Potential Targets for Treating Amyotrophic Lateral Sclerosis and Huntington's Disease.
    de Paula CZ; Gonçalves BD; Vieira LB
    Biomed Res Int; 2015; 2015():198612. PubMed ID: 26295035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A chemical approach to stem-cell biology and regenerative medicine.
    Xu Y; Shi Y; Ding S
    Nature; 2008 May; 453(7193):338-44. PubMed ID: 18480815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing stem cell therapies for juvenile and adult-onset Huntington's disease.
    Fink KD; Deng P; Torrest A; Stewart H; Pollock K; Gruenloh W; Annett G; Tempkin T; Wheelock V; Nolta JA
    Regen Med; 2015; 10(5):623-46. PubMed ID: 26237705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adipose tissue-derived stem cells in neural regenerative medicine.
    Yeh DC; Chan TM; Harn HJ; Chiou TW; Chen HS; Lin ZS; Lin SZ
    Cell Transplant; 2015; 24(3):487-92. PubMed ID: 25647067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ex vivo delivery of GDNF maintains motor function and prevents neuronal loss in a transgenic mouse model of Huntington's disease.
    Ebert AD; Barber AE; Heins BM; Svendsen CN
    Exp Neurol; 2010 Jul; 224(1):155-62. PubMed ID: 20227407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.