BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26802726)

  • 21. F654A and K558Q Mutations in NMDA Receptor 1 Affect Ethanol-Induced Behaviors in Drosophila.
    Troutwine B; Park A; Velez-Hernandez ME; Lew L; Mihic SJ; Atkinson NS
    Alcohol Clin Exp Res; 2019 Dec; 43(12):2480-2493. PubMed ID: 31593608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cis-combination of the classic per(S) and per(L) mutations results in arrhythmic Drosophila with ectopic accumulation of hyperphosphorylated PERIOD protein.
    Ko HW; DiMassa S; Kim EY; Bae K; Edery I
    J Biol Rhythms; 2007 Dec; 22(6):488-501. PubMed ID: 18057324
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock.
    Baylies MK; Bargiello TA; Jackson FR; Young MW
    Nature; 1987 Mar 26-Apr 1; 326(6111):390-2. PubMed ID: 2436052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of methylmercury and alcohol exposure in Drosophila melanogaster: Potential risks in neurodevelopmental disorders.
    Chauhan V; Chauhan A
    Int J Dev Neurosci; 2016 Jun; 51():36-41. PubMed ID: 27151262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of Adh function on ethanol preference and tolerance in adult Drosophila melanogaster.
    Ogueta M; Cibik O; Eltrop R; Schneider A; Scholz H
    Chem Senses; 2010 Nov; 35(9):813-22. PubMed ID: 20739429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ethanol-regulated genes that contribute to ethanol sensitivity and rapid tolerance in Drosophila.
    Kong EC; Allouche L; Chapot PA; Vranizan K; Moore MS; Heberlein U; Wolf FW
    Alcohol Clin Exp Res; 2010 Feb; 34(2):302-16. PubMed ID: 19951294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alcohol dehydrogenase and ethanol tolerance at the cellular level in Drosophila melanogaster.
    Geer BW; Dybas LK; Shanner LJ
    J Exp Zool; 1989 Apr; 250(1):22-39. PubMed ID: 2498460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental reduction of codon bias in the Drosophila alcohol dehydrogenase gene results in decreased ethanol tolerance of adult flies.
    Carlini DB
    J Evol Biol; 2004 Jul; 17(4):779-85. PubMed ID: 15271077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chronobiology of ethanol: animal models.
    Rosenwasser AM
    Alcohol; 2015 Jun; 49(4):311-9. PubMed ID: 25971539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developmental alcohol exposure disrupts circadian regulation of BDNF in the rat suprachiasmatic nucleus.
    Allen GC; West JR; Chen WJ; Earnest DJ
    Neurotoxicol Teratol; 2004; 26(3):353-8. PubMed ID: 15113597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lmo genes regulate behavioral responses to ethanol in Drosophila melanogaster and the mouse.
    Lasek AW; Giorgetti F; Berger KH; Tayor S; Heberlein U
    Alcohol Clin Exp Res; 2011 Sep; 35(9):1600-6. PubMed ID: 21599714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Convergent Evidence From Humans and Drosophila melanogaster Implicates the Transcription Factor MEF2B/Mef2 in Alcohol Sensitivity.
    Schmitt RE; Shell BC; Lee KM; Shelton KL; Mathies LD; Edwards AC; Grotewiel M
    Alcohol Clin Exp Res; 2019 Sep; 43(9):1872-1886. PubMed ID: 31241765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drosophila DBT lacking protein kinase activity produces long-period and arrhythmic circadian behavioral and molecular rhythms.
    Muskus MJ; Preuss F; Fan JY; Bjes ES; Price JL
    Mol Cell Biol; 2007 Dec; 27(23):8049-64. PubMed ID: 17893330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drosophila and vertebrate casein kinase Idelta exhibits evolutionary conservation of circadian function.
    Fan JY; Preuss F; Muskus MJ; Bjes ES; Price JL
    Genetics; 2009 Jan; 181(1):139-52. PubMed ID: 18957703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chronic ethanol intake alters circadian period-responses to brief light pulses in rats.
    Rosenwasser AM; Logan RW; Fecteau ME
    Chronobiol Int; 2005; 22(2):227-36. PubMed ID: 16021840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light evokes rapid circadian network oscillator desynchrony followed by gradual phase retuning of synchrony.
    Roberts L; Leise TL; Noguchi T; Galschiodt AM; Houl JH; Welsh DK; Holmes TC
    Curr Biol; 2015 Mar; 25(7):858-67. PubMed ID: 25754644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drugs, flies, and videotape: the effects of ethanol and cocaine on Drosophila locomotion.
    Rothenfluh A; Heberlein U
    Curr Opin Neurobiol; 2002 Dec; 12(6):639-45. PubMed ID: 12490253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pigment dispersing factor-dependent and -independent circadian locomotor behavioral rhythms.
    Sheeba V; Sharma VK; Gu H; Chou YT; O'Dowd DK; Holmes TC
    J Neurosci; 2008 Jan; 28(1):217-27. PubMed ID: 18171939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-term effects of neonatal alcohol exposure on photic reentrainment and phase-shifting responses of the activity rhythm in adult rats.
    Allen GC; Farnell YZ; Maeng JU; West JR; Chen WJ; Earnest DJ
    Alcohol; 2005 Oct; 37(2):79-88. PubMed ID: 16584971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drosophila melanogaster, a genetic model system for alcohol research.
    Guarnieri DJ; Heberlein U
    Int Rev Neurobiol; 2003; 54():199-228. PubMed ID: 12785288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.