These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26803216)

  • 1. Mixed cropping has the potential to enhance flood tolerance of drought-adapted grain crops.
    Iijima M; Awala SK; Watanabe Y; Kawato Y; Fujioka Y; Yamane K; Wada KC
    J Plant Physiol; 2016 Mar; 192():21-5. PubMed ID: 26803216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet).
    Ghatak A; Chaturvedi P; Nagler M; Roustan V; Lyon D; Bachmann G; Postl W; Schröfl A; Desai N; Varshney RK; Weckwerth W
    J Proteomics; 2016 Jun; 143():122-135. PubMed ID: 26944736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small-scale farming in drylands: New models for resilient practices of millet and sorghum cultivation.
    Ruiz-Giralt A; Biagetti S; Madella M; Lancelotti C
    PLoS One; 2023; 18(2):e0268120. PubMed ID: 36730331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maize, sorghum, and pearl millet have highly contrasting species strategies to adapt to water stress and climate change-like conditions.
    Choudhary S; Guha A; Kholova J; Pandravada A; Messina CD; Cooper M; Vadez V
    Plant Sci; 2020 Jun; 295():110297. PubMed ID: 32534623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in Whole-Plant Metabolism during the Grain-Filling Stage in Sorghum Grown under Elevated CO2 and Drought.
    De Souza AP; Cocuron JC; Garcia AC; Alonso AP; Buckeridge MS
    Plant Physiol; 2015 Nov; 169(3):1755-65. PubMed ID: 26336093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet.
    de la Fuente C; Grondin A; Sine B; Debieu M; Belin C; Hajjarpoor A; Atkinson JA; Passot S; Salson M; Orjuela J; Tranchant-Dubreuil C; Brossier JR; Steffen M; Morgado C; Dinh HN; Pandey BK; Darmau J; Champion A; Petitot AS; Barrachina C; Pratlong M; Mounier T; Nakombo-Gbassault P; Gantet P; Gangashetty P; Guedon Y; Vadez V; Reichheld JP; Bennett MJ; Kane NA; Guyomarc'h S; Wells DM; Vigouroux Y; Laplaze L
    Elife; 2024 Jan; 12():. PubMed ID: 38294329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Characteristics of seasonal drought and its adaptation in southern China under the background of global climate change. VI. Optimized layout of cropping system for preventing and avoiding drought disaster].
    Sui Y; Huang WH; Yang XG; Li MS
    Ying Yong Sheng Tai Xue Bao; 2013 Nov; 24(11):3192-8. PubMed ID: 24564149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transpiration efficiency: insights from comparisons of C4 cereal species.
    Vadez V; Choudhary S; Kholová J; Hash CT; Srivastava R; Kumar AA; Prandavada A; Anjaiah M
    J Exp Bot; 2021 Jul; 72(14):5221-5234. PubMed ID: 34080009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum.
    Allen LH; Kakani VG; Vu JC; Boote KJ
    J Plant Physiol; 2011 Nov; 168(16):1909-18. PubMed ID: 21676489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of a phospholipase (OsPLDα1) for drought tolerance in upland rice (Oryza sativa L.).
    Abreu FRM; Dedicova B; Vianello RP; Lanna AC; de Oliveira JAV; Vieira AF; Morais OP; Mendonça JA; Brondani C
    Protoplasma; 2018 Nov; 255(6):1751-1761. PubMed ID: 29846801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Napier millet (Pennisetum purpureumx P. glaucum) and sorghum (Sorghum bicolor) trap crops for the management of Chilo partellus on maize.
    Hari NS; Jindal J
    Bull Entomol Res; 2009 Apr; 99(2):131-7. PubMed ID: 18947446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive metabolomic, proteomic and physiological analyses of grain yield reduction in rice under abrupt drought-flood alternation stress.
    Xiong QQ; Shen TH; Zhong L; Zhu CL; Peng XS; He XP; Fu JR; Ouyang LJ; Bian JM; Hu LF; Sun XT; Xu J; Zhou HY; He HH; Chen XR
    Physiol Plant; 2019 Dec; 167(4):564-584. PubMed ID: 30561011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of millet and sorghum to a varying water supply around the primary and nodal roots.
    Rostamza M; Richards RA; Watt M
    Ann Bot; 2013 Jul; 112(2):439-46. PubMed ID: 23749473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a model estimating root length density from root impacts on a soil profile in pearl millet (Pennisetum glaucum (L.) R. Br). Application to measure root system response to water stress in field conditions.
    Faye A; Sine B; Chopart JL; Grondin A; Lucas M; Diedhiou AG; Gantet P; Cournac L; Min D; Audebert A; Kane A; Laplaze L
    PLoS One; 2019; 14(7):e0214182. PubMed ID: 31329591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.].
    Kholová J; Hash CT; Kakkera A; Kocová M; Vadez V
    J Exp Bot; 2010; 61(2):369-77. PubMed ID: 19861657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the involvement of hydraulic root or shoot adjustments as mechanisms underlying water deficit tolerance in two Sorghum bicolor genotypes.
    Sutka MR; Manzur ME; Vitali VA; Micheletto S; Amodeo G
    J Plant Physiol; 2016 Mar; 192():13-20. PubMed ID: 26803215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning and expression analysis of Aquaporin genes in pearl millet [Pennisetum glaucum (L) R. Br.] genotypes contrasting in their transpiration response to high vapour pressure deficits.
    Reddy PS; Tharanya M; Sivasakthi K; Srikanth M; Hash CT; Kholova J; Sharma KK; Vadez V
    Plant Sci; 2017 Dec; 265():167-176. PubMed ID: 29223338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic Responses to High Temperature and Strong Light Suggest Potential Post-flowering Drought Tolerance of Sorghum Japanese Landrace Takakibi.
    Ohnishi N; Wacera W F; Sakamoto W
    Plant Cell Physiol; 2019 Sep; 60(9):2086-2099. PubMed ID: 31147706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification.
    Dimkpa CO; Singh U; Bindraban PS; Elmer WH; Gardea-Torresdey JL; White JC
    Sci Total Environ; 2019 Oct; 688():926-934. PubMed ID: 31726574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress.
    Abreha KB; Enyew M; Carlsson AS; Vetukuri RR; Feyissa T; Motlhaodi T; Ng'uni D; Geleta M
    Planta; 2021 Dec; 255(1):20. PubMed ID: 34894286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.