These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26803297)

  • 41. Fate of natural organic matter at a full-scale Drinking Water Treatment Plant in Greece.
    Papageorgiou A; Papadakis N; Voutsa D
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1841-51. PubMed ID: 26400244
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Formation of chlorination by-products in waters with low SUVA--correlations with SUVA and differential UV spectroscopy.
    Ates N; Kitis M; Yetis U
    Water Res; 2007 Oct; 41(18):4139-48. PubMed ID: 17614116
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Risk associated with increasing bromide in drinking water sources in Yancheng City, China.
    Wang Y; Zhu G
    Environ Monit Assess; 2019 Dec; 192(1):36. PubMed ID: 31828539
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A study on the distribution of chlorination by-products (CBPs) in treated water in Korea.
    Lee KJ; Kim BH; Hong JE; Pyo HS; Park SJ; Lee DW
    Water Res; 2001 Aug; 35(12):2861-72. PubMed ID: 11471686
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Formation and changes of regulated trihalomethanes and haloacetic acids in raw water of Yangtze River, Huangpu River and different treatment processes and pipelines network].
    Chen X; Zhang D; Lu YH; Zheng WW; Wu YX; Wei X; Tian DJ; Wang X; Zhang H; Guo S; Jiang SH; Qu WD
    Zhonghua Yu Fang Yi Xue Za Zhi; 2010 Oct; 44(10):893-8. PubMed ID: 21176519
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predictive models for water sources with high susceptibility for bromine-containing disinfection by-product formation: implications for water treatment.
    Watson K; Farré MJ; Birt J; McGree J; Knight N
    Environ Sci Pollut Res Int; 2015 Feb; 22(3):1963-78. PubMed ID: 25163557
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling the formation of trihalomethanes in rural and semi-urban drinking water distribution networks of Costa Rica.
    Kelly-Coto DE; Gamboa-Jiménez A; Mora-Campos D; Salas-Jiménez P; Silva-Narváez B; Jiménez-Antillón J; Pino-Gómez M; Romero-Esquivel LG
    Environ Sci Pollut Res Int; 2022 May; 29(22):32845-32854. PubMed ID: 35020142
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Low trihalomethane formation in Korean drinking water.
    Yoon J; Choi Y; Cho S; Lee D
    Sci Total Environ; 2003 Jan; 302(1-3):157-66. PubMed ID: 12526906
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DPB formation in breakpoint chlorination of wastewater.
    Yang X; Shang C; Huang JC
    Water Res; 2005 Nov; 39(19):4755-4767. PubMed ID: 16288796
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ternary Model of the Speciation of I-/Br-/Cl-Trihalomethanes Formed in Chloraminated Surface Waters.
    Yan M; Li M; Roccaro P; Korshin GV
    Environ Sci Technol; 2016 Apr; 50(8):4468-75. PubMed ID: 27007081
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of haloacetaldehyde and trihalomethane formation potentials during drinking water treatment.
    Mao YQ; Wang XM; Guo XF; Yang HW; Xie YF
    Chemosphere; 2016 Sep; 159():378-384. PubMed ID: 27318452
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiple linear regression modeling of disinfection by-products formation in Istanbul drinking water reservoirs.
    Uyak V; Ozdemir K; Toroz I
    Sci Total Environ; 2007 Jun; 378(3):269-80. PubMed ID: 17412398
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Factors influencing DBPs occurrence in tap water of Jinhua Region in Zhejiang Province, China.
    Zhou X; Zheng L; Chen S; Du H; Gakoko Raphael BM; Song Q; Wu F; Chen J; Lin H; Hong H
    Ecotoxicol Environ Saf; 2019 Apr; 171():813-822. PubMed ID: 30660975
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Examination of disinfection by-product (DBP) formation in source waters: a study using log-transformed differential spectra.
    Yan M; Korshin GV; Chang HS
    Water Res; 2014 Mar; 50():179-88. PubMed ID: 24374129
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of UV disinfection combined with chlorination/chloramination on the formation of halonitromethanes and haloacetonitriles in drinking water.
    Shah AD; Dotson AD; Linden KG; Mitch WA
    Environ Sci Technol; 2011 Apr; 45(8):3657-64. PubMed ID: 21417331
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The fate of microplastics and organic matter leaching behavior during chlorination.
    Lin T; Su J
    Chemosphere; 2022 Sep; 302():134892. PubMed ID: 35537624
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine.
    Bougeard CM; Goslan EH; Jefferson B; Parsons SA
    Water Res; 2010 Feb; 44(3):729-40. PubMed ID: 19910014
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of bromine substitution factors of DBPs during chlorination and chloramination.
    Hua G; Reckhow DA
    Water Res; 2012 Sep; 46(13):4208-16. PubMed ID: 22687526
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of Dissolved Organic Matter and Its Derived Disinfection Byproduct Formation along the Yangtze River.
    Fang C; Yang X; Ding S; Luan X; Xiao R; Du Z; Wang P; An W; Chu W
    Environ Sci Technol; 2021 Sep; 55(18):12326-12336. PubMed ID: 34297564
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.
    Wang T; Qu G; Ren J; Yan Q; Sun Q; Liang D; Hu S
    Water Res; 2016 Feb; 89():28-38. PubMed ID: 26624519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.