These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 26803603)

  • 1. pKa determination of graphene-like materials: Validating chemical functionalization.
    Orth ES; Ferreira JGL; Fonsaca JES; Blaskievicz SF; Domingues SH; Dasgupta A; Terrones M; Zarbin AJG
    J Colloid Interface Sci; 2016 Apr; 467():239-244. PubMed ID: 26803603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edge-Functionalized Graphene Nanoribbon Chemical Sensor: Comparison with Carbon Nanotube and Graphene.
    Cho KM; Cho SY; Chong S; Koh HJ; Kim DW; Kim J; Jung HT
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42905-42914. PubMed ID: 30421906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pKa Measurements.
    Konkena B; Vasudevan S
    J Phys Chem Lett; 2012 Apr; 3(7):867-72. PubMed ID: 26286412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable doping of graphene nanoribbon arrays by chemical functionalization.
    Solís-Fernández P; Bissett MA; Tsuji M; Ago H
    Nanoscale; 2015 Feb; 7(8):3572-80. PubMed ID: 25630426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A grand canonical Monte Carlo study of SO
    Maurya M; Singh JK
    J Chem Phys; 2017 Jan; 146(4):044704. PubMed ID: 28147511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalization of Defect Sites in Graphene with RuO2 for High Capacitive Performance.
    Yang F; Zhang L; Zuzuarregui A; Gregorczyk K; Li L; Beltrán M; Tollan C; Brede J; Rogero C; Chuvilin A; Knez M
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20513-9. PubMed ID: 26331286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene Oxide Nanoribbon Hydrogel: Viscoelastic Behavior and Use as a Molecular Separation Membrane.
    Choi Y; Kim SS; Kim JH; Kang J; Choi E; Choi SE; Kim JP; Kwon O; Kim DW
    ACS Nano; 2020 Sep; 14(9):12195-12202. PubMed ID: 32885959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium.
    Soltani T; Lee BK
    J Colloid Interface Sci; 2016 Nov; 481():168-80. PubMed ID: 27474817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile hydrothermal preparation of graphene oxide nanoribbons from graphene oxide.
    Sun LW; Zhao J; Zhou LJ; Li GD
    Chem Commun (Camb); 2013 Jul; 49(54):6087-9. PubMed ID: 23727666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution.
    Wijeratne SS; Penev ES; Lu W; Li J; Duque AL; Yakobson BI; Tour JM; Kiang CH
    Sci Rep; 2016 Aug; 6():31174. PubMed ID: 27503635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of chemometrics in determination of the acid dissociation constants (pKa) of several benzodiazepine derivatives as poorly soluble drugs in the presence of ionic surfactants.
    Shayesteh TH; Radmehr M; Khajavi F; Mahjub R
    Eur J Pharm Sci; 2015 Mar; 69():44-50. PubMed ID: 25550245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable and Reversible Dispersiblity of Graphene Materials by a Generic Organometallic Functionalization.
    Yan W; Xu Y; Huang L; Chen Y
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2032-9. PubMed ID: 26413617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pyrene-substituted tris(bipyridine)osmium(II) complex as a versatile redox probe for characterizing and functionalizing carbon nanotube- and graphene-based electrodes.
    Le Goff A; Reuillard B; Cosnier S
    Langmuir; 2013 Jul; 29(27):8736-42. PubMed ID: 23767958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monothiolation and Reduction of Graphene Oxide via One-Pot Synthesis: Hybrid Catalyst for Oxygen Reduction.
    Chua CK; Pumera M
    ACS Nano; 2015 Apr; 9(4):4193-9. PubMed ID: 25816194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-sensitivity ascorbic acid sensor using graphene sheet/graphene nanoribbon hybrid material as an enhanced electrochemical sensing platform.
    Lavanya J; Gomathi N
    Talanta; 2015 Nov; 144():655-61. PubMed ID: 26452874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfur-functionalized graphene oxide by epoxide ring-opening.
    Thomas HR; Marsden AJ; Walker M; Wilson NR; Rourke JP
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7613-8. PubMed ID: 24895067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable dispersibility and wettability of graphene oxide through one-pot functionalization and reduction.
    Price EK; Bansala T; Achee TC; Sun W; Green MJ
    J Colloid Interface Sci; 2019 Sep; 552():771-780. PubMed ID: 31181366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications.
    Kumar S; Raj S; Kolanthai E; Sood AK; Sampath S; Chatterjee K
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3237-52. PubMed ID: 25584679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled Chemistry Approach to the Oxo-Functionalization of Graphene.
    Eigler S
    Chemistry; 2016 May; 22(21):7012-27. PubMed ID: 26990805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene oxide nanoribbons (GNO), reduced graphene nanoribbons (GNR), and multi-layers of oxidized graphene functionalized with ionic liquids (GO-IL) for assembly of miniaturized electrochemical devices.
    Valentini F; Carbone M; Palleschi G
    Anal Bioanal Chem; 2013 Apr; 405(11):3449-74. PubMed ID: 23274557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.