These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 26803684)
1. Airborne pollen trends in the Iberian Peninsula. Galán C; Alcázar P; Oteros J; García-Mozo H; Aira MJ; Belmonte J; Diaz de la Guardia C; Fernández-González D; Gutierrez-Bustillo M; Moreno-Grau S; Pérez-Badía R; Rodríguez-Rajo J; Ruiz-Valenzuela L; Tormo R; Trigo MM; Domínguez-Vilches E Sci Total Environ; 2016 Apr; 550():53-59. PubMed ID: 26803684 [TBL] [Abstract][Full Text] [Related]
2. Environmental behaviour of airborne Amaranthaceae pollen in the southern part of the Iberian Peninsula, and its role in future climate scenarios. Cariñanos P; Alcázar P; Galán C; Domínguez E Sci Total Environ; 2014 Feb; 470-471():480-7. PubMed ID: 24176695 [TBL] [Abstract][Full Text] [Related]
3. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain. García-Mozo H; Oteros JA; Galán C Sci Total Environ; 2016 Apr; 548-549():221-228. PubMed ID: 26802350 [TBL] [Abstract][Full Text] [Related]
4. Statistical approach to the analysis of olive long-term pollen season trends in southern Spain. García-Mozo H; Yaezel L; Oteros J; Galán C Sci Total Environ; 2014 Mar; 473-474():103-9. PubMed ID: 24361781 [TBL] [Abstract][Full Text] [Related]
5. Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change. García de León D; García-Mozo H; Galán C; Alcázar P; Lima M; González-Andújar JL Sci Total Environ; 2015 Oct; 530-531():103-109. PubMed ID: 26026414 [TBL] [Abstract][Full Text] [Related]
6. Quercus pollen season dynamics in the Iberian peninsula: response to meteorological parameters and possible consequences of climate change. Garcia-Mozo H; Galan C; Jato V; Belmonte J; de la Guardia C; Fernandez D; Gutierrez M; Aira M; Roure J; Ruiz L; Trigo M; Dominguez-Vilches E Ann Agric Environ Med; 2006; 13(2):209-24. PubMed ID: 17195993 [TBL] [Abstract][Full Text] [Related]
7. Long-term trends and influence of climate and land-use changes on pollen profiles of a Mediterranean oak forest. López-Orozco R; García-Mozo H; Oteros J; Galán C Sci Total Environ; 2023 Nov; 897():165400. PubMed ID: 37423282 [TBL] [Abstract][Full Text] [Related]
8. Increasing resolution of airborne pollen forecasting at a discrete sampled area in the southwest Mediterranean Basin. Picornell A; Oteros J; Trigo MM; Gharbi D; Docampo Fernández S; Melgar Caballero M; Toro FJ; García-Sánchez J; Ruiz-Mata R; Cabezudo B; Recio M Chemosphere; 2019 Nov; 234():668-681. PubMed ID: 31234084 [TBL] [Abstract][Full Text] [Related]
9. Regional forecast model for the Olea pollen season in Extremadura (SW Spain). Fernández-Rodríguez S; Durán-Barroso P; Silva-Palacios I; Tormo-Molina R; Maya-Manzano JM; Gonzalo-Garijo Á Int J Biometeorol; 2016 Oct; 60(10):1509-1517. PubMed ID: 26896182 [TBL] [Abstract][Full Text] [Related]
10. Is long range transport of pollen in the NW Mediterranean basin influenced by Northern Hemisphere teleconnection patterns? Izquierdo R; Alarcon M; Periago C; Belmonte J Sci Total Environ; 2015 Nov; 532():771-9. PubMed ID: 26125408 [TBL] [Abstract][Full Text] [Related]
11. Comparative long-term trend analysis of daily weather conditions with daily pollen concentrations in Brussels, Belgium. Bruffaerts N; De Smedt T; Delcloo A; Simons K; Hoebeke L; Verstraeten C; Van Nieuwenhuyse A; Packeu A; Hendrickx M Int J Biometeorol; 2018 Mar; 62(3):483-491. PubMed ID: 29064036 [TBL] [Abstract][Full Text] [Related]
12. Aerobiological and phenological study of Pistacia in Córdoba city (Spain). Velasco-Jiménez MJ; Arenas M; Alcázar P; Galán C; Domínguez-Vilches E Sci Total Environ; 2015 Feb; 505():1036-42. PubMed ID: 25461104 [TBL] [Abstract][Full Text] [Related]
13. Correlation between airborne Olea europaea pollen concentrations and levels of the major allergen Ole e 1 in Córdoba, Spain, 2012-2014. Plaza MP; Alcázar P; Galán C Int J Biometeorol; 2016 Dec; 60(12):1841-1847. PubMed ID: 27094917 [TBL] [Abstract][Full Text] [Related]
14. A study on correlations between precipitation ETCCDI and airborne pollen/fungal spore parameters in the NE Iberian Peninsula. Rodríguez-Solà R; Casas-Castillo MC; Zhang JJH; Kirchner R; Alarcón M; Periago C; De Linares C; Belmonte J Int J Biometeorol; 2022 Jun; 66(6):1173-1187. PubMed ID: 35275236 [TBL] [Abstract][Full Text] [Related]
15. What are the most important variables for Poaceae airborne pollen forecasting? Navares R; Aznarte JL Sci Total Environ; 2017 Feb; 579():1161-1169. PubMed ID: 27932221 [TBL] [Abstract][Full Text] [Related]
16. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula. Fernández-Rodríguez S; Skjøth CA; Tormo-Molina R; Brandao R; Caeiro E; Silva-Palacios I; Gonzalo-Garijo A; Smith M Int J Biometeorol; 2014 Apr; 58(3):337-48. PubMed ID: 23334443 [TBL] [Abstract][Full Text] [Related]
17. Climate sensitivity of allergenic taxa in Central Europe associated with new climate change related forces. Deák AJ; Makra L; Matyasovszky I; Csépe Z; Muladi B Sci Total Environ; 2013 Jan; 442():36-47. PubMed ID: 23178762 [TBL] [Abstract][Full Text] [Related]
18. Assessment of Quercus flowering trends in NW Spain. Jato V; Rodríguez-Rajo FJ; Fernandez-González M; Aira MJ Int J Biometeorol; 2015 May; 59(5):517-31. PubMed ID: 25108375 [TBL] [Abstract][Full Text] [Related]
19. Airborne pollen calendar of Portugal: a 15-year survey (2002-2017). Camacho I; Caeiro E; Nunes C; Morais-Almeida M Allergol Immunopathol (Madr); 2020; 48(2):194-201. PubMed ID: 31601498 [TBL] [Abstract][Full Text] [Related]
20. Airborne castanea pollen forecasting model for ecological and allergological implementation. Astray G; Fernández-González M; Rodríguez-Rajo FJ; López D; Mejuto JC Sci Total Environ; 2016 Apr; 548-549():110-121. PubMed ID: 26802339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]