These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 26803731)

  • 41. Long-term trends of phosphorus concentrations in an artificial lake: Socio-economic and climate drivers.
    Vystavna Y; Hejzlar J; Kopáček J
    PLoS One; 2017; 12(10):e0186917. PubMed ID: 29049408
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of River Discharge and Land Use and Land Cover (LULC) on Water Quality Dynamics in Migina Catchment, Rwanda.
    Uwimana A; van Dam A; Gettel G; Bigirimana B; Irvine K
    Environ Manage; 2017 Sep; 60(3):496-512. PubMed ID: 28660371
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nitrogen and phosphorus dynamics of a re-wetted shallow-flooded peatland.
    Kieckbusch JJ; Schrautzer J
    Sci Total Environ; 2007 Jul; 380(1-3):3-12. PubMed ID: 17118429
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolution Characteristics of Surface Water Quality Due to Climate Change and LUCC under Scenario Simulations: A Case Study in the Luanhe River Basin.
    Bi W; Weng B; Yuan Z; Ye M; Zhang C; Zhao Y; Yan D; Xu T
    Int J Environ Res Public Health; 2018 Aug; 15(8):. PubMed ID: 30103482
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phosphorus dynamics observed through increasing scales in a nested headwater-to-river channel study.
    Haygarth PM; Wood FL; Heathwaite AL; Butler PJ
    Sci Total Environ; 2005 May; 344(1-3):83-106. PubMed ID: 15907512
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Potential pollutant sources in a Choptank River (USA) subwatershed and the influence of land use and watershed characteristics.
    Niño de Guzmán GT; Hapeman CJ; Prabhakara K; Codling EE; Shelton DR; Rice CP; Hively WD; McCarty GW; Lang MW; Torrents A
    Sci Total Environ; 2012 Jul; 430():270-9. PubMed ID: 22633186
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Streamflow duration curve to explain nutrient export in Midwestern USA watersheds: Implication for water quality achievements.
    Kamrath B; Yuan Y
    J Environ Manage; 2023 Jun; 336():117598. PubMed ID: 36871454
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Losses of nitrogen and phosphorus from agricultural and forest areas in Finland during the 1980s and 1990s.
    Vuorenmaa J; Rekolainen S; Lepistö A; Kenttämies K; Kauppila P
    Environ Monit Assess; 2002 Jun; 76(2):213-48. PubMed ID: 12108593
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-frequency nutrient monitoring to infer seasonal patterns in catchment source availability, mobilisation and delivery.
    Bende-Michl U; Verburg K; Cresswell HP
    Environ Monit Assess; 2013 Nov; 185(11):9191-219. PubMed ID: 23754144
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Implications of hydrologic connectivity between hillslopes and riparian zones on streamflow composition.
    von Freyberg J; Radny D; Gall HE; Schirmer M
    J Contam Hydrol; 2014 Nov; 169():62-74. PubMed ID: 25106837
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Estimating Total Nitrogen and Phosphorus Losses in a Data-Poor Ethiopian Catchment.
    Zinabu E; van der Kwast J; Kelderman P; Irvine K
    J Environ Qual; 2017 Nov; 46(6):1519-1527. PubMed ID: 29293824
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chlorophyll-a in the rivers of eastern England.
    Neal C; Hilton J; Wade AJ; Neal M; Wickham H
    Sci Total Environ; 2006 Jul; 365(1-3):84-104. PubMed ID: 16626783
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed.
    Waller DM; Meyer AG; Raff Z; Apfelbaum SI
    J Environ Manage; 2021 Apr; 284():112019. PubMed ID: 33540198
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Bivariate statistical model for calculating phosphorus input loads to the river from point and nonpoint sources].
    Chen DJ; Sun SY; Jia YN; Chen JB; Lü J
    Huan Jing Ke Xue; 2013 Jan; 34(1):84-90. PubMed ID: 23487922
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Accelerated export of sediment and carbon from a landscape under intensive agriculture.
    Glendell M; Brazier RE
    Sci Total Environ; 2014 Apr; 476-477():643-56. PubMed ID: 24503335
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Water quality assessment for sustainable agriculture in the Wet Tropics--a community-assisted approach.
    Faithful J; Finlayson W
    Mar Pollut Bull; 2005; 51(1-4):99-112. PubMed ID: 15757712
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nutrient loads from agricultural and forested areas in Finland from 1981 up to 2010-can the efficiency of undertaken water protection measures seen?
    Tattari S; Koskiaho J; Kosunen M; Lepistö A; Linjama J; Puustinen M
    Environ Monit Assess; 2017 Mar; 189(3):95. PubMed ID: 28161881
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Future climate and land uses effects on flow and nutrient loads of a Mediterranean catchment in South Australia.
    Shrestha MK; Recknagel F; Frizenschaf J; Meyer W
    Sci Total Environ; 2017 Jul; 590-591():186-193. PubMed ID: 28262367
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Water quality, nutrients and the European union's Water Framework Directive in a lowland agricultural region: Suffolk, south-east England.
    Howden NJ; Bowes MJ; Clark AD; Humphries N; Neal C
    Sci Total Environ; 2009 Apr; 407(8):2966-79. PubMed ID: 19217145
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nutrient concentrations in a Pampasic first order stream with different land uses in the surrounding plots (Buenos Aires, Argentina).
    Mugni H; Paracampo A; Bonetto C
    Bull Environ Contam Toxicol; 2013 Oct; 91(4):391-5. PubMed ID: 23963439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.