BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26803735)

  • 1. Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants.
    Álvarez-López V; Prieto-Fernández Á; Cabello-Conejo MI; Kidd PS
    Sci Total Environ; 2016 Apr; 548-549():370-379. PubMed ID: 26803735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the growth of Ni-hyperaccumulating plants in serpentine quarry tailings.
    Ghasemi Z; Ghaderian SM; Monterroso C; Kidd PS
    Int J Phytoremediation; 2018 Jun; 20(7):699-708. PubMed ID: 29723049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection and combustion of Ni-hyperaccumulators for the phytomining process.
    Zhang X; Houzelot V; Bani A; Morel JL; Echevarria G; Simonnot MO
    Int J Phytoremediation; 2014; 16(7-12):1058-72. PubMed ID: 24933902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of plant growth regulators to increase nickel phytoextraction by Alyssum species.
    Cabello-Conejo MI; Centofanti T; Kidd PS; Prieto-Fernández A; Chaney RL
    Int J Phytoremediation; 2013; 15(4):365-75. PubMed ID: 23488002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of Alyssum murale biomass in soil.
    Zhang L; Angle JS; Delorme T; Chaney RL
    Int J Phytoremediation; 2005; 7(3):169-76. PubMed ID: 16285409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nickel phytomining field trial using Odontarrhena chalcidica and Noccaea goesingensis on an Austrian serpentine soil.
    Rosenkranz T; Hipfinger C; Ridard C; Puschenreiter M
    J Environ Manage; 2019 Jul; 242():522-528. PubMed ID: 31078125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous treatments with phytohormones can improve growth and nickel yield of hyperaccumulating plants.
    Cabello-Conejo MI; Prieto-Fernández A; Kidd PS
    Sci Total Environ; 2014 Oct; 494-495():1-8. PubMed ID: 25016589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nickel solubilizing capacity and characterization of rhizobacteria isolated from hyperaccumulating and non-hyperaccumulating subspecies of Alyssum serpyllifolium.
    Becerra-Castro C; Prieto-Fernández A; Alvarez-Lopez V; Monterroso C; Cabello-Conejo MI; Acea MJ; Kidd PS
    Int J Phytoremediation; 2011; 13 Suppl 1():229-44. PubMed ID: 22046762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal extraction by Alyssum serpyllifolium ssp. lusitanicum on mine-spoil soils from Spain.
    Kidd PS; Monterroso C
    Sci Total Environ; 2005 Jan; 336(1-3):1-11. PubMed ID: 15589245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nickel phytomining from industrial wastes: Growing nickel hyperaccumulator plants on galvanic sludges.
    Tognacchini A; Rosenkranz T; van der Ent A; Machinet GE; Echevarria G; Puschenreiter M
    J Environ Manage; 2020 Jan; 254():109798. PubMed ID: 31739090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the Agronomy of Alyssum murale for Extensive Phytomining: A Five-Year Field Study.
    Bani A; Echevarria G; Sulçe S; Morel JL
    Int J Phytoremediation; 2015; 17(1-6):117-27. PubMed ID: 25237722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal accumulation by
    Manteca-Bautista D; Pérez-Latorre AV; Freitas H; Hidalgo-Triana N
    Int J Phytoremediation; 2022; 24(12):1301-1309. PubMed ID: 35019784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of subsoil and soil volume on the accumulation of nickel by
    Paul ALD; Chaney RL
    Int J Phytoremediation; 2024; 26(6):928-935. PubMed ID: 38018123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fertilization regimes affecting nickel phytomining efficiency on a serpentine soil in the temperate climate zone.
    Hipfinger C; Rosenkranz T; Thüringer J; Puschenreiter M
    Int J Phytoremediation; 2021; 23(4):407-414. PubMed ID: 32976726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exogenous cytokinin treatments of an Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: implications for phytoextraction.
    Cassina L; Tassi E; Morelli E; Giorgetti L; Remorini D; Chaney RL; Barbafieri M
    Int J Phytoremediation; 2011; 13 Suppl 1():90-101. PubMed ID: 22046753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoextraction potential of the nickel hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea.
    Chardot V; Massoura ST; Echevarria G; Reeves RD; Morel JL
    Int J Phytoremediation; 2005; 7(4):323-35. PubMed ID: 16463544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining.
    Boominathan R; Saha-Chaudhury NM; Sahajwalla V; Doran PM
    Biotechnol Bioeng; 2004 May; 86(3):243-50. PubMed ID: 15083504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Community diversity and potential functions of rhizosphere-associated bacteria of nickel hyperaccumulators found in Albania.
    Lopez S; Goux X; Echevarria G; Calusinska M; Morel JL; Benizri E
    Sci Total Environ; 2019 Mar; 654():237-249. PubMed ID: 30445325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of pH on metal accumulation in two Alyssum species.
    Kukier U; Peters CA; Chaney RL; Angle JS; Roseberg RJ
    J Environ Qual; 2004; 33(6):2090-102. PubMed ID: 15537931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterially induced weathering of ultramafic rock and its implications for phytoextraction.
    Becerra-Castro C; Kidd P; Kuffner M; Prieto-Fernández Á; Hann S; Monterroso C; Sessitsch A; Wenzel W; Puschenreiter M
    Appl Environ Microbiol; 2013 Sep; 79(17):5094-103. PubMed ID: 23793627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.