BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26803755)

  • 1. The system neurophysiological basis of backward inhibition.
    Zhang R; Stock AK; Fischer R; Beste C
    Brain Struct Funct; 2016 Dec; 221(9):4575-4587. PubMed ID: 26803755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural mechanisms and functional neuroanatomical networks during memory and cue-based task switching as revealed by residue iteration decomposition (RIDE) based source localization.
    Wolff N; Mückschel M; Beste C
    Brain Struct Funct; 2017 Nov; 222(8):3819-3831. PubMed ID: 28470552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The neurophysiological basis of reward effects on backward inhibition processes.
    Zhang R; Stock AK; Beste C
    Neuroimage; 2016 Nov; 142():163-171. PubMed ID: 27262242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neurophysiological basis of developmental changes during sequential cognitive flexibility between adolescents and adults.
    Giller F; Zhang R; Roessner V; Beste C
    Hum Brain Mapp; 2019 Feb; 40(2):552-565. PubMed ID: 30240511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of phasic norepinephrine modulations during task switching: evidence for specific effects in parietal areas.
    Wolff N; Mückschel M; Ziemssen T; Beste C
    Brain Struct Funct; 2018 Mar; 223(2):925-940. PubMed ID: 29026994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.
    Gonzalez-Rosa JJ; Inuggi A; Blasi V; Cursi M; Annovazzi P; Comi G; Falini A; Leocani L
    Int J Psychophysiol; 2013 Jul; 89(1):37-47. PubMed ID: 23664841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task.
    Schevernels H; Bombeke K; Van der Borght L; Hopf JM; Krebs RM; Boehler CN
    Neuroimage; 2015 Nov; 121():115-25. PubMed ID: 26188262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a neural dual-process account for adverse effects of cognitive control.
    Zink N; Stock AK; Colzato L; Beste C
    Brain Struct Funct; 2018 Sep; 223(7):3347-3363. PubMed ID: 29948189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response mode-dependent differences in neurofunctional networks during response inhibition: an EEG-beamforming study.
    Dippel G; Chmielewski W; Mückschel M; Beste C
    Brain Struct Funct; 2016 Nov; 221(8):4091-4101. PubMed ID: 26608829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expectancy effects during response selection modulate attentional selection and inhibitory control networks.
    Chmielewski WX; Mückschel M; Roessner V; Beste C
    Behav Brain Res; 2014 Nov; 274():53-61. PubMed ID: 25116248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N1 and N2 ERPs reflect the regulation of automatic approach tendencies to positive stimuli.
    Ernst LH; Ehlis AC; Dresler T; Tupak SV; Weidner A; Fallgatter AJ
    Neurosci Res; 2013 Mar; 75(3):239-49. PubMed ID: 23298530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The norepinephrine system affects specific neurophysiological subprocesses in the modulation of inhibitory control by working memory demands.
    Chmielewski WX; Mückschel M; Ziemssen T; Beste C
    Hum Brain Mapp; 2017 Jan; 38(1):68-81. PubMed ID: 27519546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The norepinephrine system and its relevance for multi-component behavior.
    Mückschel M; Gohil K; Ziemssen T; Beste C
    Neuroimage; 2017 Feb; 146():1062-1070. PubMed ID: 27720820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociating action inhibition, conflict monitoring and sensory mismatch into independent components of event related potentials in GO/NOGO task.
    Kropotov JD; Ponomarev VA; Hollup S; Mueller A
    Neuroimage; 2011 Jul; 57(2):565-75. PubMed ID: 21571079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study on the neural mechanism of inhibition of return by the event-related potential in the Go/NoGo task.
    Tian Y; Yao D
    Biol Psychol; 2008 Oct; 79(2):171-8. PubMed ID: 18524452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?
    Dimoska A; Johnstone SJ; Barry RJ
    Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The system neurophysiological basis of non-adaptive cognitive control: Inhibition of implicit learning mediated by right prefrontal regions.
    Stock AK; Steenbergen L; Colzato L; Beste C
    Hum Brain Mapp; 2016 Dec; 37(12):4511-4522. PubMed ID: 27477001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are low and high number magnitudes processed differently while resolving the conflict evoked by the SNARC effect?
    Gut M; Szumska I; Wasilewska M; Jaśkowski P
    Int J Psychophysiol; 2012 Jul; 85(1):7-16. PubMed ID: 22343113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time course of automatic emotion regulation during a facial Go/Nogo task.
    Zhang W; Lu J
    Biol Psychol; 2012 Feb; 89(2):444-9. PubMed ID: 22200654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurophysiological markers of alert responding during goal-directed behavior: a high-density electrical mapping study.
    Dockree PM; Kelly SP; Robertson IH; Reilly RB; Foxe JJ
    Neuroimage; 2005 Sep; 27(3):587-601. PubMed ID: 16024257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.