These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26803755)

  • 41. Event-related potentials associated with Attention Network Test.
    Neuhaus AH; Urbanek C; Opgen-Rhein C; Hahn E; Ta TM; Koehler S; Gross M; Dettling M
    Int J Psychophysiol; 2010 May; 76(2):72-9. PubMed ID: 20184924
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diversity of the P3 in the task-switching paradigm.
    Gajewski PD; Falkenstein M
    Brain Res; 2011 Sep; 1411():87-97. PubMed ID: 21803343
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prefrontal cortical mechanisms underlying individual differences in cognitive flexibility and stability.
    Armbruster DJ; Ueltzhöffer K; Basten U; Fiebach CJ
    J Cogn Neurosci; 2012 Dec; 24(12):2385-99. PubMed ID: 22905818
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrophysiological correlates of the cognitive control processes underpinning mixing and switching costs.
    Tarantino V; Mazzonetto I; Vallesi A
    Brain Res; 2016 Sep; 1646():160-173. PubMed ID: 27238463
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Event-related synchronization/desynchronization and functional neuroanatomical regions associated with fatigue effects on cognitive flexibility.
    Yu S; Mückschel M; Beste C
    J Neurophysiol; 2021 Aug; 126(2):383-397. PubMed ID: 34191635
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of pre-stimulus processing on subsequent events in a warned Go/NoGo paradigm: response preparation, execution and inhibition.
    Smith JL; Johnstone SJ; Barry RJ
    Int J Psychophysiol; 2006 Aug; 61(2):121-33. PubMed ID: 16214250
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sequential inhibitory control processes assessed through simultaneous EEG-fMRI.
    Baumeister S; Hohmann S; Wolf I; Plichta MM; Rechtsteiner S; Zangl M; Ruf M; Holz N; Boecker R; Meyer-Lindenberg A; Holtmann M; Laucht M; Banaschewski T; Brandeis D
    Neuroimage; 2014 Jul; 94():349-359. PubMed ID: 24473101
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hemispheric asymmetries and cognitive flexibility: an ERP and sLORETA study.
    Ocklenburg S; Güntürkün O; Beste C
    Brain Cogn; 2012 Mar; 78(2):148-55. PubMed ID: 22133628
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Physical intensity of stimuli modulates motor inhibition by affecting response selection processes in right inferior frontal regions.
    Friedrich J; Mückschel M; Beste C
    Behav Brain Res; 2019 Feb; 359():597-608. PubMed ID: 30292901
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrophysiological correlates of preparation and implementation for different types of task shifts.
    Hsieh S; Wu M
    Brain Res; 2011 Nov; 1423():41-52. PubMed ID: 22000079
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Components of attentional set-switching.
    Rushworth MF; Passingham RE; Nobre AC
    Exp Psychol; 2005; 52(2):83-98. PubMed ID: 15850156
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Signaling a switch: neural correlates of task switching guided by task cues and transition cues.
    West R; Langley MM; Bailey K
    Psychophysiology; 2011 May; 48(5):612-23. PubMed ID: 20840196
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ERP components activated by the "GO!" and "WITHHOLD!" conflict in the random Sustained Attention to Response Task.
    Zordan L; Sarlo M; Stablum F
    Brain Cogn; 2008 Feb; 66(1):57-64. PubMed ID: 17651880
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ERP components associated with successful and unsuccessful stopping in a stop-signal task.
    Kok A; Ramautar JR; De Ruiter MB; Band GP; Ridderinkhof KR
    Psychophysiology; 2004 Jan; 41(1):9-20. PubMed ID: 14692996
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Who comes first? The role of the prefrontal and parietal cortex in cognitive control.
    Brass M; Ullsperger M; Knoesche TR; von Cramon DY; Phillips NA
    J Cogn Neurosci; 2005 Sep; 17(9):1367-75. PubMed ID: 16197690
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative analysis of event-related potentials during Go/NoGo and CPT: decomposition of electrophysiological markers of response inhibition and sustained attention.
    Kirmizi-Alsan E; Bayraktaroglu Z; Gurvit H; Keskin YH; Emre M; Demiralp T
    Brain Res; 2006 Aug; 1104(1):114-28. PubMed ID: 16824492
    [TBL] [Abstract][Full Text] [Related]  

  • 57. N2 event-related potential correlates of response inhibition in an auditory Go/Nogo task.
    Kaiser S; Weiss O; Hill H; Markela-Lerenc J; Kiefer M; Weisbrod M
    Int J Psychophysiol; 2006 Aug; 61(2):279-82. PubMed ID: 16298004
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fractionating the cognitive control required to bring about a change in task: a dense-sensor event-related potential study.
    Astle DE; Jackson GM; Swainson R
    J Cogn Neurosci; 2008 Feb; 20(2):255-67. PubMed ID: 18275333
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRI and ERPs.
    Ullsperger M; von Cramon DY
    Neuroimage; 2001 Dec; 14(6):1387-401. PubMed ID: 11707094
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Event related brain potential evidence for preserved attentional set switching in schizophrenia.
    Kieffaber PD; O'Donnell BF; Shekhar A; Hetrick WP
    Schizophr Res; 2007 Jul; 93(1-3):355-65. PubMed ID: 17466490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.