These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26803755)

  • 61. Predictability and context determine differences in conflict monitoring between adolescence and adulthood.
    Chmielewski WX; Roessner V; Beste C
    Behav Brain Res; 2015 Oct; 292():10-8. PubMed ID: 26049059
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Variations in the TNF-α gene (TNF-α -308G→A) affect attention and action selection mechanisms in a dissociated fashion.
    Beste C; Baune BT; Falkenstein M; Konrad C
    J Neurophysiol; 2010 Nov; 104(5):2523-31. PubMed ID: 20810691
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Separating distinct aspects of the voluntary selection between response alternatives: N2- and P3-related BOLD responses.
    Karch S; Feuerecker R; Leicht G; Meindl T; Hantschk I; Kirsch V; Ertl M; Lutz J; Pogarell O; Mulert C
    Neuroimage; 2010 May; 51(1):356-64. PubMed ID: 20171291
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Different brain mechanisms between stereotype activation and application: evidence from an ERP study.
    Jia L; Dickter CL; Luo J; Xiao X; Yang Q; Lei M; Qiu J; Zhang Q
    Int J Psychol; 2012; 47(1):58-66. PubMed ID: 22047000
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Event-related potentials in panic disorder and generalized anxiety disorder.
    Hanatani T; Sumi N; Taguchi S; Fujimoto O; Nan-No H; Takeda M
    Psychiatry Clin Neurosci; 2005 Feb; 59(1):83-8. PubMed ID: 15679545
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The spatiotemporal dynamics of early attention processes: a high-resolution electroencephalographic study of N2 subcomponent sources.
    Bocquillon P; Bourriez JL; Palmero-Soler E; Molaee-Ardekani B; Derambure P; Dujardin K
    Neuroscience; 2014 Jun; 271():9-22. PubMed ID: 24747215
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Electrophysiological activity underlying inhibitory control processes in normal adults.
    Schmajuk M; Liotti M; Busse L; Woldorff MG
    Neuropsychologia; 2006; 44(3):384-95. PubMed ID: 16095637
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Modulating younger and older adults' performance in ignoring pictorial information during a word matching task.
    Wilkinson AJ; Yang L; Dyson BJ
    Brain Cogn; 2013 Dec; 83(3):351-9. PubMed ID: 24212116
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Age-related spatiotemporal reorganization during response inhibition.
    Hong X; Sun J; Bengson JJ; Tong S
    Int J Psychophysiol; 2014 Sep; 93(3):371-80. PubMed ID: 24905017
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nonspatial intermodal selective attention is mediated by sensory brain areas: evidence from event-related potentials.
    Talsma D; Kok A
    Psychophysiology; 2001 Sep; 38(5):736-51. PubMed ID: 11577897
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Electrophysiological revelations of trial history effects in a color oddball search task.
    Shin E; Chong SC
    Psychophysiology; 2016 Dec; 53(12):1878-1888. PubMed ID: 27699796
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Neural correlates of stimulus and response interference in a 2-1 mapping stroop task.
    Chen A; Bailey K; Tiernan BN; West R
    Int J Psychophysiol; 2011 May; 80(2):129-38. PubMed ID: 21356252
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Early attentional processes distinguish selective from global motor inhibitory control: an electrical neuroimaging study.
    Sallard E; Barral J; Chavan CF; Spierer L
    Neuroimage; 2014 Feb; 87():183-9. PubMed ID: 24220039
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An ERP study of preparatory and inhibitory mechanisms in a cued saccade task.
    Van der Stigchel S; Heslenfeld DJ; Theeuwes J
    Brain Res; 2006 Aug; 1105(1):32-45. PubMed ID: 16595127
    [TBL] [Abstract][Full Text] [Related]  

  • 75. ERP indices of persisting and current inhibitory control: a study of saccadic task switching.
    Mueller SC; Swainson R; Jackson GM
    Neuroimage; 2009 Mar; 45(1):191-7. PubMed ID: 19100841
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Conflict and inhibition in the cued-Go/NoGo task.
    Randall WM; Smith JL
    Clin Neurophysiol; 2011 Dec; 122(12):2400-7. PubMed ID: 21715225
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electrophysiological correlates of task conflicts in task-switching.
    Hsieh S; Liu H
    Brain Res; 2008 Apr; 1203():116-25. PubMed ID: 18314093
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Response inhibition and memory updating in the count/nocount task: an ERP study.
    Zhang Z; Jing J; Qi M; Gao H
    Exp Brain Res; 2021 Nov; 239(11):3371-3380. PubMed ID: 34491370
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of task complexity on ERP components in Go/Nogo tasks.
    Gajewski PD; Falkenstein M
    Int J Psychophysiol; 2013 Mar; 87(3):273-8. PubMed ID: 22906814
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An ERP study of the processing of response conflict in a dynamic localization task: the role of individual differences in task-appropriate behavior.
    Fritzsche AS; Stahl J; Gibbons H
    Clin Neurophysiol; 2010 Aug; 121(8):1358-70. PubMed ID: 20363184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.