These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26804060)

  • 21. Genetic evidence for a role of Saccharomyces cerevisiae Mph1 in recombinational DNA repair under replicative stress.
    Panico ER; Ede C; Schildmann M; Schürer KA; Kramer W
    Yeast; 2010 Jan; 27(1):11-27. PubMed ID: 19918932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA Replication Stress Phosphoproteome Profiles Reveal Novel Functional Phosphorylation Sites on Xrs2 in Saccharomyces cerevisiae.
    Huang D; Piening BD; Kennedy JJ; Lin C; Jones-Weinert CW; Yan P; Paulovich AG
    Genetics; 2016 May; 203(1):353-68. PubMed ID: 27017623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disruption of SUMO-targeted ubiquitin ligases Slx5-Slx8/RNF4 alters RecQ-like helicase Sgs1/BLM localization in yeast and human cells.
    Böhm S; Mihalevic MJ; Casal MA; Bernstein KA
    DNA Repair (Amst); 2015 Feb; 26():1-14. PubMed ID: 25588990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The F-box protein Dia2 overcomes replication impedance to promote genome stability in Saccharomyces cerevisiae.
    Blake D; Luke B; Kanellis P; Jorgensen P; Goh T; Penfold S; Breitkreutz BJ; Durocher D; Peter M; Tyers M
    Genetics; 2006 Dec; 174(4):1709-27. PubMed ID: 16751663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks.
    Herzberg K; Bashkirov VI; Rolfsmeier M; Haghnazari E; McDonald WH; Anderson S; Bashkirova EV; Yates JR; Heyer WD
    Mol Cell Biol; 2006 Nov; 26(22):8396-409. PubMed ID: 16966380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae.
    Boiteux S; Jinks-Robertson S
    Genetics; 2013 Apr; 193(4):1025-64. PubMed ID: 23547164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual cell cycle checkpoints sensitive to chromosome replication and DNA damage in the budding yeast Saccharomyces cerevisiae.
    Weinert TA
    Radiat Res; 1992 Nov; 132(2):141-3. PubMed ID: 1438694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Limiting amounts of budding yeast Rad53 S-phase checkpoint activity results in increased resistance to DNA alkylation damage.
    Cordón-Preciado V; Ufano S; Bueno A
    Nucleic Acids Res; 2006; 34(20):5852-62. PubMed ID: 17062626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts.
    Yuan F; Lai F; Gu L; Zhou W; El Hokayem J; Zhang Y
    Methods; 2009 May; 48(1):14-8. PubMed ID: 19250969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Yeast Tdp1 and Rad1-Rad10 function as redundant pathways for repairing Top1 replicative damage.
    Vance JR; Wilson TE
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13669-74. PubMed ID: 12368472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The amino-terminal tails of histones H2A and H3 coordinate efficient base excision repair, DNA damage signaling and postreplication repair in Saccharomyces cerevisiae.
    Meas R; Smerdon MJ; Wyrick JJ
    Nucleic Acids Res; 2015 May; 43(10):4990-5001. PubMed ID: 25897129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mother's sacrifice: what is she keeping for herself?
    Henderson KA; Gottschling DE
    Curr Opin Cell Biol; 2008 Dec; 20(6):723-8. PubMed ID: 18848886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of mismatch repair and Hpr1 on transcription-stimulated mitotic recombination in the yeast Saccharomyces cerevisiae.
    Freedman JA; Jinks-Robertson S
    DNA Repair (Amst); 2004 Nov; 3(11):1437-46. PubMed ID: 15380099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. dUTPase and uracil-DNA glycosylase are central modulators of antifolate toxicity in Saccharomyces cerevisiae.
    Tinkelenberg BA; Hansbury MJ; Ladner RD
    Cancer Res; 2002 Sep; 62(17):4909-15. PubMed ID: 12208740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chl1 and Ctf4 are required for damage-induced recombinations.
    Ogiwara H; Ui A; Lai MS; Enomoto T; Seki M
    Biochem Biophys Res Commun; 2007 Mar; 354(1):222-6. PubMed ID: 17222391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic phenotyping by barcode sequencing broadly distinguishes between alkylating agents, oxidizing agents, and non-genotoxic agents, and reveals a role for aromatic amino acids in cellular recovery after quinone exposure.
    Svensson JP; Quirós Pesudo L; McRee SK; Adeleye Y; Carmichael P; Samson LD
    PLoS One; 2013; 8(9):e73736. PubMed ID: 24040048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of the biological pathways targeted by isocyanate using N-succinimidyl N-methylcarbamate in budding yeast Saccharomyces cerevisiae.
    Azad GK; Singh V; Tomar RS
    PLoS One; 2014; 9(3):e92993. PubMed ID: 24664350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Peptide Derived from GAPDH Enhances Resistance to DNA Damage in Saccharomyces cerevisiae Cells.
    Zhao X; Lian X; Liu Y; Zhou L; Wu B; Fu YV
    Appl Environ Microbiol; 2022 Feb; 88(4):e0219421. PubMed ID: 34936834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of hydrazine-induced mutability in wild-type and excision-repair-defective yeast during post-treatment inhibition ofcell division.
    Lemontt JF
    Mutat Res; 1978 Apr; 50(1):57-66. PubMed ID: 347281
    [No Abstract]   [Full Text] [Related]  

  • 40. A strategy for increasing an in vivo flux by genetic manipulations. The tryptophan system of yeast.
    Niederberger P; Prasad R; Miozzari G; Kacser H
    Biochem J; 1992 Oct; 287 ( Pt 2)(Pt 2):473-9. PubMed ID: 1445205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.