These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26804120)

  • 1. Reduced-cost sparsity-exploiting algorithm for solving coupled-cluster equations.
    Brabec J; Yang C; Epifanovsky E; Krylov AI; Ng E
    J Comput Chem; 2016 May; 37(12):1059-67. PubMed ID: 26804120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solving Coupled Cluster Equations by the Newton Krylov Method.
    Yang C; Brabec J; Veis L; Williams-Young DB; Kowalski K
    Front Chem; 2020; 8():590184. PubMed ID: 33363108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient algorithms for solving the non-linear vibrational coupled-cluster equations using full and decomposed tensors.
    Madsen NK; Godtliebsen IH; Christiansen O
    J Chem Phys; 2017 Apr; 146(13):134110. PubMed ID: 28390338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated multimodel Newton-type algorithms for faster convergence of ground and excited state coupled cluster equations.
    Kjønstad EF; Folkestad SD; Koch H
    J Chem Phys; 2020 Jul; 153(1):014104. PubMed ID: 32640809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensor decomposition in post-Hartree-Fock methods. II. CCD implementation.
    Benedikt U; Böhm KH; Auer AA
    J Chem Phys; 2013 Dec; 139(22):224101. PubMed ID: 24329050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient algorithm for solving nonlinear equations with a minimal number of trial vectors: applications to atomic-orbital based coupled-cluster theory.
    Ziółkowski M; Weijo V; Jorgensen P; Olsen J
    J Chem Phys; 2008 May; 128(20):204105. PubMed ID: 18513008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear scaling local correlation approach for solving the coupled cluster equations of large systems.
    Li S; Ma J; Jiang Y
    J Comput Chem; 2002 Jan; 23(2):237-44. PubMed ID: 11924736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analysis on local convergence of inexact newton-gauss method for solving singular systems of equations.
    Zhou F
    ScientificWorldJournal; 2014; 2014():752673. PubMed ID: 24790580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equations of explicitly-correlated coupled-cluster methods.
    Shiozaki T; Kamiya M; Hirata S; Valeev EF
    Phys Chem Chem Phys; 2008 Jun; 10(23):3358-70. PubMed ID: 18535718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled-cluster theory in a projected atomic orbital basis.
    Christiansen O; Manninen P; Jorgensen P; Olsen J
    J Chem Phys; 2006 Feb; 124(8):084103. PubMed ID: 16512704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On local convergence analysis of inexact Newton method for singular systems of equations under majorant condition.
    Zhou F
    ScientificWorldJournal; 2014; 2014():498016. PubMed ID: 25243211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers.
    Cai Q; Hsieh MJ; Wang J; Luo R
    J Chem Theory Comput; 2010 Jan; 6(1):203-211. PubMed ID: 24723843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A smoothing inexact Newton method for variational inequalities with nonlinear constraints.
    Ge Z; Ni Q; Zhang X
    J Inequal Appl; 2017; 2017(1):160. PubMed ID: 28751825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CCSD-PCM: improving upon the reference reaction field approximation at no cost.
    Caricato M
    J Chem Phys; 2011 Aug; 135(7):074113. PubMed ID: 21861562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greedy Projected Gradient-Newton Method for Sparse Logistic Regression.
    Wang R; Xiu N; Zhang C
    IEEE Trans Neural Netw Learn Syst; 2020 Feb; 31(2):527-538. PubMed ID: 30990444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discarding Information from Previous Iterations in an Optimal Way To Solve the Coupled Cluster Amplitude Equations.
    Ettenhuber P; Jørgensen P
    J Chem Theory Comput; 2015 Apr; 11(4):1518-24. PubMed ID: 26574363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iterative algorithm for solving acoustic source characterization problems under block sparsity constraints.
    Bai MR; Chung C; Lan SS
    J Acoust Soc Am; 2018 Jun; 143(6):3747. PubMed ID: 29960494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The benefit of tree sparsity in accelerated MRI.
    Chen C; Huang J
    Med Image Anal; 2014 Aug; 18(6):834-42. PubMed ID: 24380657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pushing the envelope of modern methods for bundle adjustment.
    Jeong Y; Nistér D; Steedly D; Szeliski R; Kweon IS
    IEEE Trans Pattern Anal Mach Intell; 2012 Aug; 34(8):1605-17. PubMed ID: 22745002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled-cluster methods with perturbative inclusion of explicitly correlated terms: a preliminary investigation.
    Valeev EF
    Phys Chem Chem Phys; 2008 Jan; 10(1):106-13. PubMed ID: 18075688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.