These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26804140)

  • 1. Electropolymerization on wireless electrodes towards conducting polymer microfibre networks.
    Koizumi Y; Shida N; Ohira M; Nishiyama H; Tomita I; Inagi S
    Nat Commun; 2016 Jan; 7():10404. PubMed ID: 26804140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Poly(3,4-ethylenedioxythiophene)-Platinum and Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) Hybrid Fibers by Alternating Current Bipolar Electropolymerization.
    Koizumi Y; Ohira M; Watanabe T; Nishiyama H; Tomita I; Inagi S
    Langmuir; 2018 Jul; 34(26):7598-7603. PubMed ID: 29889536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-Plane Growth of Poly(3,4-ethylenedioxythiophene) Films on a Substrate Surface by Bipolar Electropolymerization.
    Watanabe T; Ohira M; Koizumi Y; Nishiyama H; Tomita I; Inagi S
    ACS Macro Lett; 2018 May; 7(5):551-555. PubMed ID: 35632929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conducting polymer electrodes printed on hydrogel.
    Sekine S; Ido Y; Miyake T; Nagamine K; Nishizawa M
    J Am Chem Soc; 2010 Sep; 132(38):13174-5. PubMed ID: 20825188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of collagen in poly(3,4-ethylenedioxythiophene) for a bifunctional film with high bio- and electrochemical activity.
    Xiao Y; Li CM; Wang S; Shi J; Ooi CP
    J Biomed Mater Res A; 2010 Feb; 92(2):766-72. PubMed ID: 19274716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer films on electrodes: investigation of ion transport at poly(3,4-ethylenedioxythiophene) films by scanning electrochemical microscopy.
    Yang N; Zoski CG
    Langmuir; 2006 Dec; 22(25):10338-47. PubMed ID: 17129001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bipolar Electrochemistry: A Powerful Tool for Electrifying Functional Material Synthesis.
    Shida N; Zhou Y; Inagi S
    Acc Chem Res; 2019 Sep; 52(9):2598-2608. PubMed ID: 31436076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of conductive poly (3,4-ethylenedioxythiophene) doped with hyaluronic acid/poly (l-lactic acid) composite film for biomedical application.
    Wang S; Guan S; Wang J; Liu H; Liu T; Ma X; Cui Z
    J Biosci Bioeng; 2017 Jan; 123(1):116-125. PubMed ID: 27498308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AC-Bipolar Electropolymerization of 3,4-Ethylenedioxythiophene in Ionic Liquids.
    Chen Z; Zhou Y; Villani E; Shida N; Tomita I; Inagi S
    Langmuir; 2023 Mar; 39(12):4450-4455. PubMed ID: 36919992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conducting polymer transistors making use of activated carbon gate electrodes.
    Tang H; Kumar P; Zhang S; Yi Z; Crescenzo GD; Santato C; Soavi F; Cicoira F
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):969-73. PubMed ID: 25510960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpenetrating Conducting Hydrogel Materials for Neural Interfacing Electrodes.
    Goding J; Gilmour A; Martens P; Poole-Warren L; Green R
    Adv Healthc Mater; 2017 May; 6(9):. PubMed ID: 28198591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gradient doping of conducting polymer films by means of bipolar electrochemistry.
    Ishiguro Y; Inagi S; Fuchigami T
    Langmuir; 2011 Jun; 27(11):7158-62. PubMed ID: 21568350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conducting polymer coated neural recording electrodes.
    Harris AR; Morgan SJ; Chen J; Kapsa RM; Wallace GG; Paolini AG
    J Neural Eng; 2013 Feb; 10(1):016004. PubMed ID: 23234724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electropolymerization of Pyrrole-Based Ionic Liquids on Selected Wireless Bipolar Electrodes.
    Chen H; Anderson JL; Anand RK
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18087-18096. PubMed ID: 35417143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells.
    Richardson-Burns SM; Hendricks JL; Foster B; Povlich LK; Kim DH; Martin DC
    Biomaterials; 2007 Mar; 28(8):1539-52. PubMed ID: 17169420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation.
    Cui XT; Zhou DD
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):502-8. PubMed ID: 18198707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-controlled application of electric potential on a conducting polymer "canvas".
    Ishiguro Y; Inagi S; Fuchigami T
    J Am Chem Soc; 2012 Mar; 134(9):4034-6. PubMed ID: 22353050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of near ohmic behavior for poly(3,4-ethylenedioxythiophene): a model consistent with systematic variations in polymerization conditions.
    Kayinamura YP; Ovadia M; Zavitz D; Rubinson JF
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2653-62. PubMed ID: 20715789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical fabrication of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibrils on microfabricated neural prosthetic devices.
    Yang J; Lipkin K; Martin DC
    J Biomater Sci Polym Ed; 2007; 18(8):1075-89. PubMed ID: 17705999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface polymerization of (3,4-ethylenedioxythiophene) probed by in situ scanning tunneling microscopy on Au(111) in ionic liquids.
    Ahmad S; Carstens T; Berger R; Butt HJ; Endres F
    Nanoscale; 2011 Jan; 3(1):251-7. PubMed ID: 21060965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.