These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 26804327)

  • 1. Involvement of spinal α2 -adrenoceptors in prolonged modulation of hind limb withdrawal reflexes following acute noxious stimulation in the anaesthetized rabbit.
    Harris J
    Eur J Neurosci; 2016 Mar; 43(6):834-45. PubMed ID: 26804327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organisation of sensitisation of hind limb withdrawal reflexes from acute noxious stimuli in the rabbit.
    Harris J; Clarke RW
    J Physiol; 2003 Jan; 546(Pt 1):251-65. PubMed ID: 12509493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in opioidergic inhibition of spinal reflexes and Fos expression evoked by mechanical and chemical noxious stimuli in the decerebrated rabbit.
    Bhandari RN; Ogilvie J; Clarke RW
    Neuroscience; 1999 Apr; 90(1):177-89. PubMed ID: 10188944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive changes in withdrawal reflexes after noxious stimulation at the heel and the toes in the decerebrated rabbit.
    Clarke RW; Wych BE; Harris J
    Neurosci Lett; 2001 May; 304(1-2):120-2. PubMed ID: 11335069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The spatial organization of central sensitization of hind limb flexor reflexes in the decerebrated, spinalized rabbit.
    Clarke RW; Harris J
    Eur J Pain; 2001; 5(2):175-85. PubMed ID: 11465983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate and tachykinin receptors in central sensitization of withdrawal reflexes in the decerebrated rabbit.
    Harris J; Joules C; Stanley C; Thomas P; Clarke RW
    Exp Physiol; 2004 Mar; 89(2):187-98. PubMed ID: 15123548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NK1-tachykinin receptors and prolonged, stimulus-evoked alterations in the excitability of withdrawal reflexes in the decerebrated and spinalized rabbit.
    Houghton AK; Clarke RW
    Neuroscience; 1995 Jun; 66(3):673-83. PubMed ID: 7644030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different roles of alpha 2-adrenoceptors of the medulla versus the spinal cord in modulation of mustard oil-induced central hyperalgesia in rats.
    Mansikka H; Idänpään-Heikkilä JJ; Pertovaara A
    Eur J Pharmacol; 1996 Feb; 297(1-2):19-26. PubMed ID: 8851161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous adrenergic control of reflexes evoked by mechanical stimulation of the heel in the decerebrated rabbit.
    Clarke RW; Harris J; Houghton AK
    Neurosci Lett; 2001 Aug; 308(3):189-92. PubMed ID: 11479020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusimotor reflexes in triceps surae muscle elicited by extension of the contralateral hind limb in the cat.
    Appelberg B; Hulliger M; Johansson H; Sojka P
    J Physiol; 1984 Oct; 355():99-117. PubMed ID: 6238161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific, inflammation-induced adaptations in withdrawal reflex pathways in the anesthetized rabbit.
    Harris J; Clarke RW
    Brain Res; 2007 Feb; 1131(1):106-11. PubMed ID: 17169342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonged inhibition of a spinal reflex after intense stimulation of distant peripheral nerves in the decerebrated rabbit.
    Taylor JS; Neal RI; Harris J; Ford TW; Clarke RW
    J Physiol; 1991 Jun; 437():71-83. PubMed ID: 1679855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential modulation of withdrawal reflexes by a cannabinoid in the rabbit.
    Jenkins S; Worthington M; Harris J; Clarke RW
    Brain Res; 2004 Jun; 1012(1-2):146-53. PubMed ID: 15158171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intense peripheral electrical stimulation differentially inhibits tail vs. limb withdrawal reflexes in the rat.
    Romita VV; Henry JL
    Brain Res; 1996 May; 720(1-2):45-53. PubMed ID: 8782895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation into the noradrenergic and serotonergic contributions of diffuse noxious inhibitory controls in a monoiodoacetate model of osteoarthritis.
    Lockwood SM; Bannister K; Dickenson AH
    J Neurophysiol; 2019 Jan; 121(1):96-104. PubMed ID: 30461363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal 5-HT-receptors and tonic modulation of transmission through a withdrawal reflex pathway in the decerebrated rabbit.
    Clarke RW; Harris J; Houghton AK
    Br J Pharmacol; 1996 Nov; 119(6):1167-76. PubMed ID: 8937720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of motor units during the hind limb flexion withdrawal reflex evoked by noxious skin heating: phasic and prolonged suppression by midbrain stimulation and comparison with simultaneously recorded dorsal horn units.
    Carstens E; Campell IG
    Pain; 1992 Feb; 48(2):215-226. PubMed ID: 1589240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unilateral subcutaneous bee venom but not formalin injection causes contralateral hypersensitized wind-up and after-discharge of the spinal withdrawal reflex in anesthetized spinal rats.
    You HJ; Arendt-Nielsen L
    Exp Neurol; 2005 Sep; 195(1):148-60. PubMed ID: 15950221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of neuropathic hypersensitivity by α(2) -adrenoceptors in the pontine A7 cell group.
    Wei H; Pertovaara A
    Basic Clin Pharmacol Toxicol; 2013 Feb; 112(2):90-5. PubMed ID: 22900496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition and facilitation of different nocifensor reflexes by spatially remote noxious stimuli.
    Morgan MM; Heinricher MM; Fields HL
    J Neurophysiol; 1994 Sep; 72(3):1152-60. PubMed ID: 7807200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.