These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26804327)

  • 21. The involvement of bulbospinal pathways in fentanyl-induced inhibition of spinal withdrawal reflexes in the decerebrated rabbit.
    Clarke RW; Parry-Baggott C; Houghton AK; Ogilvie J
    Pain; 1998 Dec; 78(3):197-207. PubMed ID: 9870573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supraspinal influence on hindlimb withdrawal thresholds and mustard oil-induced secondary allodynia in rats.
    Mansikka H; Pertovaara A
    Brain Res Bull; 1997; 42(5):359-65. PubMed ID: 9092877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interactions between cutaneous afferent inputs to a withdrawal reflex in the decerebrated rabbit and their control by descending and segmental systems.
    Clarke RW; Eves S; Harris J; Peachey JE; Stuart E
    Neuroscience; 2002; 112(3):555-71. PubMed ID: 12074898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cutaneous inhibitory receptive fields of withdrawal reflexes in the decerebrate spinal rat.
    Weng HR; Schouenborg J
    J Physiol; 1996 May; 493 ( Pt 1)(Pt 1):253-65. PubMed ID: 8735710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential Effects of a Distant Noxious Stimulus on Hindlimb Nociceptive Withdrawal Reflexes in the Rat.
    Kalliomäki J; Schouenborg J; Dickenson AH
    Eur J Neurosci; 1992; 4(7):648-652. PubMed ID: 12106328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Midbrain suppression of limb withdrawal and tail flick reflexes in the rat: correlates with descending inhibition of sacral spinal neurons.
    Carstens E; Douglass DK
    J Neurophysiol; 1995 Jun; 73(6):2179-94. PubMed ID: 7666131
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stumbling corrective reaction: a phase-dependent compensatory reaction during locomotion.
    Forssberg H
    J Neurophysiol; 1979 Jul; 42(4):936-53. PubMed ID: 479924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 5-HT receptors involved in opioid-activated descending inhibition of spinal withdrawal reflexes in the decerebrated rabbit.
    Lo WC; Jackson E; Merriman A; Harris J; Clarke RW
    Pain; 2004 May; 109(1-2):162-71. PubMed ID: 15082138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of α2-adrenoceptors in inhibitory and facilitatory pain modulation processes.
    Vo L; Drummond PD
    Eur J Pain; 2016 Mar; 20(3):386-98. PubMed ID: 26032281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long spinal and pyramidal actions on hindlimb motoneurons of the marsupial brush-tailed possum, Trichosurus vulpecula.
    Aoki M; McIntyre AK
    J Neurophysiol; 1976 Mar; 39(2):331-9. PubMed ID: 1255227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The organization of motor responses to noxious stimuli.
    Clarke RW; Harris J
    Brain Res Brain Res Rev; 2004 Oct; 46(2):163-72. PubMed ID: 15464205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of neonatal capsaicin treatment on descending modulation of spinal nociception from the rostral, medial medulla in adult rat.
    Zhuo M; Gebhart GF
    Brain Res; 1994 May; 645(1-2):164-78. PubMed ID: 8062079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cutaneous contribution to the hamstring flexor reflex in the rat: an electrophysiological and anatomical study.
    Woolf CJ; Swett JE
    Brain Res; 1984 Jun; 303(2):299-312. PubMed ID: 6744026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Paradoxical inhibition of nociceptive neurons in the dorsal horn of the rat spinal cord during a nociceptive hindlimb reflex.
    Morgan MM
    Neuroscience; 1999 Jan; 88(2):489-98. PubMed ID: 10197769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imidazoline I(2)-receptors and spinal reflexes in the decerebrated rabbit.
    Clarke RW; Harris J; Ogilvie J
    Neuropharmacology; 2000 Jul; 39(10):1904-12. PubMed ID: 10884571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spinal nociceptive reflexes are sensitized in the monosodium iodoacetate model of osteoarthritis pain in the rat.
    Kelly S; Dobson KL; Harris J
    Osteoarthritis Cartilage; 2013 Sep; 21(9):1327-35. PubMed ID: 23973147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of 5-HT(1A)-receptors in fentanyl-induced bulbospinal inhibition of a spinal withdrawal reflex in the rabbit.
    Clarke RW; Ward RE
    Pain; 2000 Mar; 85(1-2):239-45. PubMed ID: 10692624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cortical and long spinal actions on lumbosacral motoneurones in the cat.
    Aoki M; McIntyre AK
    J Physiol; 1975 Oct; 251(3):569-87. PubMed ID: 1185675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pre-emptive analgesia and its supraspinal mechanisms: enhanced descending inhibition and decreased descending facilitation by dexmedetomidine.
    You HJ; Lei J; Xiao Y; Ye G; Sun ZH; Yang L; Niu N
    J Physiol; 2016 Apr; 594(7):1875-90. PubMed ID: 26732231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.