BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26804489)

  • 1. A modular force-controlled robotic instrument for minimally invasive surgery - efficacy for being used in autonomous grasping against a variable pull force.
    Khadem SM; Behzadipour S; Mirbagheri A; Farahmand F
    Int J Med Robot; 2016 Dec; 12(4):620-633. PubMed ID: 26804489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An extended algorithm for autonomous grasping of soft tissues during robotic surgery.
    Amirkhani G; Farahmand F; Yazdian SM; Mirbagheri A
    Int J Med Robot; 2020 Oct; 16(5):1-15. PubMed ID: 32390288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery.
    He C; Wang S; Sang H; Li J; Zhang L
    Int J Med Robot; 2014 Sep; 10(3):314-24. PubMed ID: 24030887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task analysis of laparoscopic camera control schemes.
    Ellis RD; Munaco AJ; Reisner LA; Klein MD; Composto AM; Pandya AK; King BW
    Int J Med Robot; 2016 Dec; 12(4):576-584. PubMed ID: 26648563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.
    Moradi Dalvand M; Shirinzadeh B; Shamdani AH; Smith J; Zhong Y
    Int J Med Robot; 2014 Mar; 10(1):11-21. PubMed ID: 23640908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A triple-jaw actuated and sensorized instrument for grasping large organs during minimally invasive robotic surgery.
    Mirbagheri A; Farahmand F
    Int J Med Robot; 2013 Mar; 9(1):83-93. PubMed ID: 22576714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concept design of robotic modules for needlescopic surgery.
    Sen S; Harada K; Hewitt Z; Susilo E; Kobayashi E; Sakuma I
    Minim Invasive Ther Allied Technol; 2017 Aug; 26(4):232-239. PubMed ID: 28635406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect measurement of pinch and pull forces at the shaft of laparoscopic graspers.
    Dobbelsteen JJ; Lee RA; Noorden Mv; Dankelman J
    Med Biol Eng Comput; 2012 Mar; 50(3):215-21. PubMed ID: 22258638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A force-sensing surgical tool with a proximally located force/torque sensor.
    Schwalb W; Shirinzadeh B; Smith J
    Int J Med Robot; 2017 Mar; 13(1):. PubMed ID: 26919028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model.
    Wottawa CR; Genovese B; Nowroozi BN; Hart SD; Bisley JW; Grundfest WS; Dutson EP
    Surg Endosc; 2016 Aug; 30(8):3198-209. PubMed ID: 26514132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Articulated minimally invasive surgical instrument based on compliant mechanism.
    Arata J; Kogiso S; Sakaguchi M; Nakadate R; Oguri S; Uemura M; Byunghyun C; Akahoshi T; Ikeda T; Hashizume M
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1837-43. PubMed ID: 25698401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. External force estimation and implementation in robotically assisted minimally invasive surgery.
    Sang H; Yun J; Monfaredi R; Wilson E; Fooladi H; Cleary K
    Int J Med Robot; 2017 Jun; 13(2):. PubMed ID: 28466997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The MUSHA underactuated hand for robot-aided minimally invasive surgery.
    Selvaggio M; Fontanelli GA; Marrazzo VR; Bracale U; Irace A; Breglio G; Villani L; Siciliano B; Ficuciello F
    Int J Med Robot; 2019 Jun; 15(3):e1981. PubMed ID: 30588772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An anthropomorphic design for a minimally invasive surgical system based on a survey of surgical technologies, techniques and training.
    Tzemanaki A; Walters P; Pipe AG; Melhuish C; Dogramadzi S
    Int J Med Robot; 2014 Sep; 10(3):368-78. PubMed ID: 24127331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual Occlusion During Minimally Invasive Surgery: A Contemporary Review of Methods to Reduce Laparoscopic and Robotic Lens Fogging and Other Sources of Optical Loss.
    Manning TG; Perera M; Christidis D; Kinnear N; McGrath S; O'Beirne R; Zotov P; Bolton D; Lawrentschuk N
    J Endourol; 2017 Apr; 31(4):327-333. PubMed ID: 28075157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and evaluation of hand-eye coordination of surgical robotic system on task performance.
    Gao Y; Wang S; Li J; Li A; Liu H; Xing Y
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28471060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pneumatic-type surgical robot end-effector for laparoscopic surgical-operation-by-wire.
    Lee C; Park WJ; Kim M; Noh S; Yoon C; Lee C; Kim Y; Kim HH; Kim HC; Kim S
    Biomed Eng Online; 2014 Sep; 13():130. PubMed ID: 25189221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a multifunctional compliant instrument for minimally invasive surgery.
    Frecker MI; Powell KM; Haluck R
    J Biomech Eng; 2005 Nov; 127(6):990-3. PubMed ID: 16438237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force feedback in a piezoelectric linear actuator for neurosurgery.
    De Lorenzo D; De Momi E; Dyagilev I; Manganelli R; Formaglio A; Prattichizzo D; Shoham M; Ferrigno G
    Int J Med Robot; 2011 Sep; 7(3):268-75. PubMed ID: 21538769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.