These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 26804626)
41. Optical Excitation of a Nanoparticle Cu/p-NiO Photocathode Improves Reaction Selectivity for CO DuChene JS; Tagliabue G; Welch AJ; Li X; Cheng WH; Atwater HA Nano Lett; 2020 Apr; 20(4):2348-2358. PubMed ID: 32134672 [TBL] [Abstract][Full Text] [Related]
42. Photostable p-type dye-sensitized photoelectrochemical cells for water reduction. Ji Z; He M; Huang Z; Ozkan U; Wu Y J Am Chem Soc; 2013 Aug; 135(32):11696-9. PubMed ID: 23895560 [TBL] [Abstract][Full Text] [Related]
43. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex. Thoi VS; Kornienko N; Margarit CG; Yang P; Chang CJ J Am Chem Soc; 2013 Sep; 135(38):14413-24. PubMed ID: 24033186 [TBL] [Abstract][Full Text] [Related]
44. Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production. Blakemore JD; Gupta A; Warren JJ; Brunschwig BS; Gray HB J Am Chem Soc; 2013 Dec; 135(49):18288-91. PubMed ID: 24245686 [TBL] [Abstract][Full Text] [Related]
45. Photoelectrochemical CO2 Reduction by a Molecular Cobalt(II) Catalyst on Planar and Nanostructured Si Surfaces. He D; Jin T; Li W; Pantovich S; Wang D; Li G Chemistry; 2016 Sep; 22(37):13064-7. PubMed ID: 27433926 [TBL] [Abstract][Full Text] [Related]
46. Solar Hydrogen Production Using Molecular Catalysts Immobilized on Gallium Phosphide (111)A and (111)B Polymer-Modified Photocathodes. Beiler AM; Khusnutdinova D; Jacob SI; Moore GF ACS Appl Mater Interfaces; 2016 Apr; 8(15):10038-47. PubMed ID: 26998554 [TBL] [Abstract][Full Text] [Related]
48. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Kas R; Kortlever R; Milbrat A; Koper MT; Mul G; Baltrusaitis J Phys Chem Chem Phys; 2014 Jun; 16(24):12194-201. PubMed ID: 24817571 [TBL] [Abstract][Full Text] [Related]
49. Photoelectrochemical hydrogen generation employing a Cu Chhetri M; Rao CNR Phys Chem Chem Phys; 2018 Jun; 20(22):15300-15306. PubMed ID: 29796487 [TBL] [Abstract][Full Text] [Related]
50. Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation. Chen Y; Tran PD; Boix P; Ren Y; Chiam SY; Li Z; Fu K; Wong LH; Barber J ACS Nano; 2015 Apr; 9(4):3829-36. PubMed ID: 25801437 [TBL] [Abstract][Full Text] [Related]
51. Directing the mechanism of CO Walsh JJ; Forster M; Smith CL; Neri G; Potter RJ; Cowan AJ Phys Chem Chem Phys; 2018 Mar; 20(10):6811-6816. PubMed ID: 29480315 [TBL] [Abstract][Full Text] [Related]
52. Solution-grown 3D Cu2O networks for efficient solar water splitting. Kargar A; Partokia SS; Niu MT; Allameh P; Yang M; May S; Cheung JS; Sun K; Xu K; Wang D Nanotechnology; 2014 May; 25(20):205401. PubMed ID: 24784802 [TBL] [Abstract][Full Text] [Related]
53. Multisample Correlation Reveals the Origin of the Photocurrent of an Unstable Cu Kim K; Peleckis G; Wagner K; Mozer AJ J Phys Chem Lett; 2021 Sep; 12(34):8157-8163. PubMed ID: 34410734 [TBL] [Abstract][Full Text] [Related]
54. Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids. Smieja JM; Sampson MD; Grice KA; Benson EE; Froehlich JD; Kubiak CP Inorg Chem; 2013 Mar; 52(5):2484-91. PubMed ID: 23418912 [TBL] [Abstract][Full Text] [Related]
55. Efficient Conversion of CO₂ to CO Using Tin and Other Inexpensive and Easily Prepared Post-Transition Metal Catalysts. Medina-Ramos J; Pupillo RC; Keane TP; DiMeglio JL; Rosenthal J J Am Chem Soc; 2015 Apr; 137(15):5021-7. PubMed ID: 25697668 [TBL] [Abstract][Full Text] [Related]
56. Understanding the Performance of NiO Photocathodes with Alkyl-Derivatized Cobalt Catalysts and a Push-Pull Dye. Materna KL; Beiler AM; Thapper A; Ott S; Tian H; Hammarström L ACS Appl Mater Interfaces; 2020 Jul; 12(28):31372-31381. PubMed ID: 32538612 [TBL] [Abstract][Full Text] [Related]
57. Understanding the role of co-catalysts on silicon photocathodes using intensity modulated photocurrent spectroscopy. Thorne JE; Zhao Y; He D; Fan S; Vanka S; Mi Z; Wang D Phys Chem Chem Phys; 2017 Nov; 19(43):29653-29659. PubMed ID: 29085927 [TBL] [Abstract][Full Text] [Related]
58. Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition-sulfurization method. Zhao J; Minegishi T; Zhang L; Zhong M; Gunawan ; Nakabayashi M; Ma G; Hisatomi T; Katayama M; Ikeda S; Shibata N; Yamada T; Domen K Angew Chem Int Ed Engl; 2014 Oct; 53(44):11808-12. PubMed ID: 25209028 [TBL] [Abstract][Full Text] [Related]
59. Noncovalent Immobilization of a Molecular Iron-Based Electrocatalyst on Carbon Electrodes for Selective, Efficient CO2-to-CO Conversion in Water. Maurin A; Robert M J Am Chem Soc; 2016 Mar; 138(8):2492-5. PubMed ID: 26886174 [TBL] [Abstract][Full Text] [Related]
60. Interfacial charge separation in Cu2O/RuO(x) as a visible light driven CO2 reduction catalyst. Pastor E; Pesci FM; Reynal A; Handoko AD; Guo M; An X; Cowan AJ; Klug DR; Durrant JR; Tang J Phys Chem Chem Phys; 2014 Apr; 16(13):5922-6. PubMed ID: 24566893 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]