BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 26804723)

  • 1. Temperature effect on triacylglycerol species in seed oil from high stearic sunflower lines with different genetic backgrounds.
    Izquierdo NG; Martínez-Force E; Garcés R; Aguirrezábal LA; Zambelli A; Reid R
    J Sci Food Agric; 2016 Oct; 96(13):4367-76. PubMed ID: 26804723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of specific fatty acids on the asymmetric distribution of saturated fatty acids in sunflower (Helianthus annuus L.) triacylglycerols.
    Martínez-Force E; Ruiz-López N; Garcés R
    J Agric Food Chem; 2009 Feb; 57(4):1595-9. PubMed ID: 19166295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-related non-homogeneous fatty acid desaturation in sunflower (Helianthus annuus L.) seeds.
    Fernández-Moya V; Martínez-Force E; Garcés R
    Planta; 2003 Mar; 216(5):834-40. PubMed ID: 12624771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oils from improved high stearic acid sunflower seeds.
    Fernández-Moya V; Martínez-Force E; Garcés R
    J Agric Food Chem; 2005 Jun; 53(13):5326-30. PubMed ID: 15969513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in oil content and fatty acid composition of the seed oil of Acacia species collected from the northwest zone of India.
    Khan R; Srivastava R; Khan MA; Alam P; Abdin MZ; Mahmooduzzafar
    J Sci Food Agric; 2012 Aug; 92(11):2310-5. PubMed ID: 22351513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic possibilities for altering sunflower oil quality to obtain novel oils.
    Skorić D; Jocić S; Sakac Z; Lecić N
    Can J Physiol Pharmacol; 2008 Apr; 86(4):215-21. PubMed ID: 18418432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increase of the stearic acid content in high-oleic sunflower (Helianthus annuus) seeds.
    Pleite R; Martínez-Force E; Garcés R
    J Agric Food Chem; 2006 Dec; 54(25):9383-8. PubMed ID: 17147422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid characterization of a high-stearic sunflower mutant displaying a seed stearic acid gradient.
    Fernandez-Moya V; Martínez-Force E; Garcés R
    J Agric Food Chem; 2006 May; 54(10):3612-6. PubMed ID: 19127733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction and the Fatty Acid Profile of Rosa acicularis Seed Oil.
    Du H; Zhang X; Zhang R; Zhang L; Yu D; Jiang L
    J Oleo Sci; 2017 Dec; 66(12):1301-1310. PubMed ID: 29129896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fatty acid and tocopherol constituents of the seed oil extracted from 21 grape varieties (Vitis spp.).
    Sabir A; Unver A; Kara Z
    J Sci Food Agric; 2012 Jul; 92(9):1982-7. PubMed ID: 22271548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of polar and nonpolar seed lipid classes from highly saturated fatty acid sunflower mutants.
    Alvarez-Ortega R; Cantisán S; Martínez-Force E; Garcés R
    Lipids; 1997 Aug; 32(8):833-7. PubMed ID: 9270974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of triacylglycerol species during seed germination in fatty acid sunflower (Helianthus annuus) mutants.
    Fernández-Moya V; Martínez-Force E; Garcés R
    J Agric Food Chem; 2000 Mar; 48(3):770-4. PubMed ID: 10725147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid characterization of seed oils from high-palmitic, low-palmitoleic, and very high-stearic acid sunflower lines.
    Serrano-Vega MJ; Martínez-Force E; Garcés R
    Lipids; 2005 Apr; 40(4):369-74. PubMed ID: 16028719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-stearic and High-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing.
    Liu Q; Singh SP; Green AG
    Plant Physiol; 2002 Aug; 129(4):1732-43. PubMed ID: 12177486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of triacylglycerol species from high-saturated sunflower (Helianthus annuus) mutants.
    Fernández-Moya V; Martínez-Force E; Garcés R
    J Agric Food Chem; 2000 Mar; 48(3):764-9. PubMed ID: 10725146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acids and bioactive compounds of the pulps and kernels of Brazilian palm species, guariroba (Syagrus oleraces), jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata).
    Coimbra MC; Jorge N
    J Sci Food Agric; 2012 Feb; 92(3):679-84. PubMed ID: 21922463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature effect on a high stearic acid sunflower mutant.
    Fernández-Moya V; Martínez-Force E; Garcés R
    Phytochemistry; 2002 Jan; 59(1):33-7. PubMed ID: 11754941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of genetic background on the stability of sunflower fatty acid composition in different high oleic mutations.
    Alberio C; Aguirrezábal LA; Izquierdo NG; Reid R; Zuil S; Zambelli A
    J Sci Food Agric; 2018 Aug; 98(11):4074-4084. PubMed ID: 29388684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemistry of high stearic sunflower, a new source of saturated fats.
    Salas JJ; Martínez-Force E; Harwood JL; Venegas-Calerón M; Aznar-Moreno JA; Moreno-Pérez AJ; Ruíz-López N; Serrano-Vega MJ; Graham IA; Mullen RT; Garcés R
    Prog Lipid Res; 2014 Jul; 55():30-42. PubMed ID: 24858414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chamaerops humilis L. var. argentea André date palm seed oil: a potential dietetic plant product.
    Nehdi IA; Mokbli S; Sbihi H; Tan CP; Al-Resayes SI
    J Food Sci; 2014 Apr; 79(4):C534-9. PubMed ID: 24666023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.