These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 26804790)

  • 1. Confinement-deconfinement transition due to spontaneous symmetry breaking in quantum Hall bilayers.
    Pikulin DI; Silvestrov PG; Hyart T
    Nat Commun; 2016 Jan; 7():10462. PubMed ID: 26804790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay of exciton condensation and the quantum spin hall effect in InAs/GaSb bilayers.
    Pikulin DI; Hyart T
    Phys Rev Lett; 2014 May; 112(17):176403. PubMed ID: 24836261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vortices, tunneling, and deconfinement in bilayer quantum Hall excitonic superfluid.
    Wang Z
    Phys Rev Lett; 2005 May; 94(17):176804. PubMed ID: 15904326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state.
    Young AF; Sanchez-Yamagishi JD; Hunt B; Choi SH; Watanabe K; Taniguchi T; Ashoori RC; Jarillo-Herrero P
    Nature; 2014 Jan; 505(7484):528-32. PubMed ID: 24362569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium transport through a gate-controlled barrier on the quantum spin Hall edge.
    Ilan R; Cayssol J; Bardarson JH; Moore JE
    Phys Rev Lett; 2012 Nov; 109(21):216602. PubMed ID: 23215605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Andreev reflection of helical edge modes in InAs/GaSb quantum spin Hall insulator.
    Knez I; Du RR; Sullivan G
    Phys Rev Lett; 2012 Nov; 109(18):186603. PubMed ID: 23215307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of Time-Reversal Invariant Helical Edge-Modes in Bilayer Graphene/WSe
    Tiwari P; Srivastav SK; Ray S; Das T; Bid A
    ACS Nano; 2021 Jan; 15(1):916-922. PubMed ID: 33378173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlocal transport in the quantum spin Hall state.
    Roth A; Brüne C; Buhmann H; Molenkamp LW; Maciejko J; Qi XL; Zhang SC
    Science; 2009 Jul; 325(5938):294-7. PubMed ID: 19608911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helical edge states and fractional quantum Hall effect in a graphene electron-hole bilayer.
    Sanchez-Yamagishi JD; Luo JY; Young AF; Hunt BM; Watanabe K; Taniguchi T; Ashoori RC; Jarillo-Herrero P
    Nat Nanotechnol; 2017 Feb; 12(2):118-122. PubMed ID: 27798608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dipolar excitons, spontaneous phase coherence, and superfluid-insulator transition in bilayer quantum Hall systems at nu = 1.
    Yang K
    Phys Rev Lett; 2001 Jul; 87(5):056802. PubMed ID: 11497797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle-hole symmetry protects spin-valley blockade in graphene quantum dots.
    Banszerus L; Möller S; Hecker K; Icking E; Watanabe K; Taniguchi T; Hassler F; Volk C; Stampfer C
    Nature; 2023 Jun; 618(7963):51-56. PubMed ID: 37138084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of interaction on quantum spin Hall insulators.
    Lee DH
    Phys Rev Lett; 2011 Oct; 107(16):166806. PubMed ID: 22107419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum anomalous Hall and quantum spin-Hall phases in flattened Bi and Sb bilayers.
    Jin KH; Jhi SH
    Sci Rep; 2015 Feb; 5():8426. PubMed ID: 25672932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum spin Hall effect in inverted type-II semiconductors.
    Liu C; Hughes TL; Qi XL; Wang K; Zhang SC
    Phys Rev Lett; 2008 Jun; 100(23):236601. PubMed ID: 18643529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A topological Dirac insulator in a quantum spin Hall phase.
    Hsieh D; Qian D; Wray L; Xia Y; Hor YS; Cava RJ; Hasan MZ
    Nature; 2008 Apr; 452(7190):970-4. PubMed ID: 18432240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ballistic quantum spin Hall state and enhanced edge backscattering in strong magnetic fields.
    Tkachov G; Hankiewicz EM
    Phys Rev Lett; 2010 Apr; 104(16):166803. PubMed ID: 20482073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum parity Hall effect in Bernal-stacked trilayer graphene.
    Stepanov P; Barlas Y; Che S; Myhro K; Voigt G; Pi Z; Watanabe K; Taniguchi T; Smirnov D; Zhang F; Lake RK; MacDonald AH; Lau CN
    Proc Natl Acad Sci U S A; 2019 May; 116(21):10286-10290. PubMed ID: 31053618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum spin hall insulator state in HgTe quantum wells.
    König M; Wiedmann S; Brüne C; Roth A; Buhmann H; Molenkamp LW; Qi XL; Zhang SC
    Science; 2007 Nov; 318(5851):766-70. PubMed ID: 17885096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topological order and semions in a strongly correlated quantum spin Hall insulator.
    Rüegg A; Fiete GA
    Phys Rev Lett; 2012 Jan; 108(4):046401. PubMed ID: 22400868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confinement in the Bulk, Deconfinement on the Wall: Infrared Equivalence between Compactified QCD and Quantum Magnets.
    Sulejmanpasic T; Shao H; Sandvik AW; Ünsal M
    Phys Rev Lett; 2017 Sep; 119(9):091601. PubMed ID: 28949566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.