These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 26804824)

  • 41. Conjugate addition vs Heck reaction: a theoretical study on competitive coupling catalyzed by isoelectronic metal (Pd(II) and Rh(I)).
    Peng Q; Yan H; Zhang X; Wu YD
    J Org Chem; 2012 Sep; 77(17):7487-96. PubMed ID: 22876853
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Renewable Hydride Donors for the Catalytic Reduction of CO
    Alherz A; Lim CH; Kuo YC; Lehman P; Cha J; Hynes JT; Musgrave CB
    J Phys Chem B; 2018 Nov; 122(44):10179-10189. PubMed ID: 30290115
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design of a catalyst through Fe doping of the boron cage B
    Qian L; Ma KY; Zhou ZJ; Ma F
    Phys Chem Chem Phys; 2017 Dec; 19(48):32723-32732. PubMed ID: 29199289
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intramolecular alkyl phosphine dehydrogenation in cationic rhodium complexes of tris(cyclopentylphosphine).
    Douglas TM; Brayshaw SK; Dallanegra R; Kociok-Köhn G; Macgregor SA; Moxham GL; Weller AS; Wondimagegn T; Vadivelu P
    Chemistry; 2008; 14(3):1004-22. PubMed ID: 17992682
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comparative study on the CO
    Xia GJ; Liu JW; Liu ZF
    Dalton Trans; 2016 Nov; 45(43):17329-17342. PubMed ID: 27722384
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Triphosphine-Ligated Copper Hydrides for CO2 Hydrogenation: Structure, Reactivity, and Thermodynamic Studies.
    Zall CM; Linehan JC; Appel AM
    J Am Chem Soc; 2016 Aug; 138(31):9968-77. PubMed ID: 27434540
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermodynamic Hydricity of Transition Metal Hydrides.
    Wiedner ES; Chambers MB; Pitman CL; Bullock RM; Miller AJ; Appel AM
    Chem Rev; 2016 Aug; 116(15):8655-92. PubMed ID: 27483171
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intermolecular alkene and alkyne hydroacylation with beta-S-substituted aldehydes: mechanistic insight into the role of a hemilabile P-O-P ligand.
    Moxham GL; Randell-Sly H; Brayshaw SK; Weller AS; Willis MC
    Chemistry; 2008; 14(27):8383-97. PubMed ID: 18666296
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphine-free ruthenium NCN-ligand complexes and their use in catalytic CO
    Sung MMH; Prokopchuk DE; Morris RH
    Dalton Trans; 2019 Nov; 48(44):16569-16577. PubMed ID: 31560363
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stereochemical nonrigidity of a chiral rhodium boryl hydride complex: a sigma-borane complex as transition state for isomerization.
    Câmpian MV; Clot E; Eisenstein O; Helmstedt U; Jasim N; Perutz RN; Whitwood AC; Williamson D
    J Am Chem Soc; 2008 Apr; 130(13):4375-85. PubMed ID: 18327937
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Explaining the Advantageous Impact of Tertiary versus Secondary Nitrogen Center on the Activity of PNP-Pincer Co(I)-Complexes for Catalytic Hydrogenation of CO
    Bothra N; Das S; Pati SK
    Chemistry; 2021 Nov; 27(66):16407-16414. PubMed ID: 34636450
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparative study on the hydrogenation of ketones catalyzed by diphosphine-diamine transition metal complexes using DFT method.
    Chen Y; Tang Y; Lei M
    Dalton Trans; 2009 Apr; (13):2359-64. PubMed ID: 19290369
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Asymmetric hydrogenation catalyzed by a rhodium complex of (R)-(tert-butylmethylphosphino)(di-tert-butylphosphino)methane: scope of enantioselectivity and mechanistic study.
    Gridnev ID; Imamoto T; Hoge G; Kouchi M; Takahashi H
    J Am Chem Soc; 2008 Feb; 130(8):2560-72. PubMed ID: 18237166
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Unusual non-bifunctional mechanism for Co-PNP complex catalyzed transfer hydrogenation governed by the electronic configuration of metal center.
    Hou C; Jiang J; Li Y; Zhang Z; Zhao C; Ke Z
    Dalton Trans; 2015 Oct; 44(37):16573-85. PubMed ID: 26332273
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design.
    Ge H; Chen X; Yang X
    Chemistry; 2017 Jul; 23(37):8850-8856. PubMed ID: 28409860
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Selective Oxidation of H
    Isegawa M; Matsumoto T; Ogo S
    Inorg Chem; 2020 Jan; 59(2):1014-1028. PubMed ID: 31898897
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploiting metal-ligand bifunctional reactions in the design of iron asymmetric hydrogenation catalysts.
    Morris RH
    Acc Chem Res; 2015 May; 48(5):1494-502. PubMed ID: 25897779
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanistic Insights into the Directed Hydrogenation of Hydroxylated Alkene Catalyzed by Bis(phosphine)cobalt Dialkyl Complexes.
    Ma X; Lei M
    J Org Chem; 2017 Mar; 82(5):2703-2712. PubMed ID: 28195727
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Asymmetric hydrogenation with highly active IndolPhos-Rh catalysts: kinetics and reaction mechanism.
    Wassenaar J; Kuil M; Lutz M; Spek AL; Reek JN
    Chemistry; 2010 Jun; 16(22):6509-17. PubMed ID: 20414911
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure and reactivity of bis(silyl) dihydride complexes (PMe(3))(3)Ru(SiR(3))(2)(H)(2): model compounds and real intermediates in a dehydrogenative C-Si bond forming reaction.
    Dioumaev VK; Yoo BR; Procopio LJ; Carroll PJ; Berry DH
    J Am Chem Soc; 2003 Jul; 125(29):8936-48. PubMed ID: 12862491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.