These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 26804995)

  • 1. Pathway-Specific Striatal Substrates for Habitual Behavior.
    O'Hare JK; Ade KK; Sukharnikova T; Van Hooser SD; Palmeri ML; Yin HH; Calakos N
    Neuron; 2016 Feb; 89(3):472-9. PubMed ID: 26804995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity in striatopallidal projection neurons mediates the acquisition of habitual actions.
    Shan Q; Christie MJ; Balleine BW
    Eur J Neurosci; 2015 Aug; 42(4):2097-104. PubMed ID: 26054036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic alcohol exposure disrupts top-down control over basal ganglia action selection to produce habits.
    Renteria R; Baltz ET; Gremel CM
    Nat Commun; 2018 Jan; 9(1):211. PubMed ID: 29335427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Striatopallidal Pathway Distinctly Modulates Goal-Directed Valuation and Acquisition of Instrumental Behavior via Striatopallidal Output Projections.
    He Y; Li Y; Pu Z; Chen M; Gao Y; Chen L; Ruan Y; Pan X; Zhou Y; Ge Y; Zhou J; Zheng W; Huang Z; Li Z; Chen JF
    Cereb Cortex; 2020 Mar; 30(3):1366-1381. PubMed ID: 31690946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct and indirect dorsolateral striatum pathways reinforce different action strategies.
    Vicente AM; Galvão-Ferreira P; Tecuapetla F; Costa RM
    Curr Biol; 2016 Apr; 26(7):R267-9. PubMed ID: 27046807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complementary Control over Habits and Behavioral Vigor by Phasic Activity in the Dorsolateral Striatum.
    Crego ACG; Štoček F; Marchuk AG; Carmichael JE; van der Meer MAA; Smith KS
    J Neurosci; 2020 Mar; 40(10):2139-2153. PubMed ID: 31969469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in activity of the striatum during formation of a motor habit.
    Tang C; Pawlak AP; Prokopenko V; West MO
    Eur J Neurosci; 2007 Feb; 25(4):1212-27. PubMed ID: 17331217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lesions of the Patch Compartment of Dorsolateral Striatum Disrupt Stimulus-Response Learning.
    Jenrette TA; Logue JB; Horner KA
    Neuroscience; 2019 Sep; 415():161-172. PubMed ID: 31356898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Striatal indirect pathway mediates exploration via collicular competition.
    Lee J; Sabatini BL
    Nature; 2021 Nov; 599(7886):645-649. PubMed ID: 34732888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocannabinoid Modulation of Orbitostriatal Circuits Gates Habit Formation.
    Gremel CM; Chancey JH; Atwood BK; Luo G; Neve R; Ramakrishnan C; Deisseroth K; Lovinger DM; Costa RM
    Neuron; 2016 Jun; 90(6):1312-1324. PubMed ID: 27238866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic Activation of the Sensorimotor Cortex Reveals "Local Inhibitory and Global Excitatory" Inputs to the Basal Ganglia.
    Ozaki M; Sano H; Sato S; Ogura M; Mushiake H; Chiken S; Nakao N; Nambu A
    Cereb Cortex; 2017 Dec; 27(12):5716-5726. PubMed ID: 29028940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Striatal Cholinergic Interneurons Control Motor Behavior and Basal Ganglia Function in Experimental Parkinsonism.
    Maurice N; Liberge M; Jaouen F; Ztaou S; Hanini M; Camon J; Deisseroth K; Amalric M; Kerkerian-Le Goff L; Beurrier C
    Cell Rep; 2015 Oct; 13(4):657-666. PubMed ID: 26489458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action suppression reveals opponent parallel control via striatal circuits.
    Cruz BF; Guiomar G; Soares S; Motiwala A; Machens CK; Paton JJ
    Nature; 2022 Jul; 607(7919):521-526. PubMed ID: 35794480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementary Contributions of Striatal Projection Pathways to Action Initiation and Execution.
    Tecuapetla F; Jin X; Lima SQ; Costa RM
    Cell; 2016 Jul; 166(3):703-715. PubMed ID: 27453468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring and Updating of Action Selection for Goal-Directed Behavior through the Striatal Direct and Indirect Pathways.
    Nonomura S; Nishizawa K; Sakai Y; Kawaguchi Y; Kato S; Uchigashima M; Watanabe M; Yamanaka K; Enomoto K; Chiken S; Sano H; Soma S; Yoshida J; Samejima K; Ogawa M; Kobayashi K; Nambu A; Isomura Y; Kimura M
    Neuron; 2018 Sep; 99(6):1302-1314.e5. PubMed ID: 30146299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The acquisition of goal-directed actions generates opposing plasticity in direct and indirect pathways in dorsomedial striatum.
    Shan Q; Ge M; Christie MJ; Balleine BW
    J Neurosci; 2014 Jul; 34(28):9196-201. PubMed ID: 25009253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike-timing dependent plasticity in striatal interneurons.
    Fino E; Venance L
    Neuropharmacology; 2011 Apr; 60(5):780-8. PubMed ID: 21262240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete representation of action space and value in all dorsal striatal pathways.
    Weglage M; Wärnberg E; Lazaridis I; Calvigioni D; Tzortzi O; Meletis K
    Cell Rep; 2021 Jul; 36(4):109437. PubMed ID: 34320355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An inhibitory corticostriatal pathway.
    Rock C; Zurita H; Wilson C; Apicella AJ
    Elife; 2016 May; 5():. PubMed ID: 27159237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absence of cue-evoked firing in rat dorsolateral striatum neurons.
    Root DH; Tang CC; Ma S; Pawlak AP; West MO
    Behav Brain Res; 2010 Jul; 211(1):23-32. PubMed ID: 20211654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.