BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 26805392)

  • 1. Antioxidant Activity/Capacity Measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays.
    Apak R; Özyürek M; Güçlü K; Çapanoğlu E
    J Agric Food Chem; 2016 Feb; 64(5):1028-45. PubMed ID: 26805392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays.
    Apak R; Özyürek M; Güçlü K; Çapanoğlu E
    J Agric Food Chem; 2016 Feb; 64(5):997-1027. PubMed ID: 26728425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements.
    Prior RL; Wu X; Schaich K
    J Agric Food Chem; 2005 May; 53(10):4290-302. PubMed ID: 15884874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide Inhibitor of Complement C1 (PIC1) demonstrates antioxidant activity via single electron transport (SET) and hydrogen atom transfer (HAT).
    Gregory Rivera M; Hair PS; Cunnion KM; Krishna NK
    PLoS One; 2018; 13(3):e0193931. PubMed ID: 29499069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of antioxidants: scope, limitations and relevance of assays.
    Pinchuk I; Shoval H; Dotan Y; Lichtenberg D
    Chem Phys Lipids; 2012 Sep; 165(6):638-47. PubMed ID: 22721987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Phenolic chain-breaking antioxidants--their activity and mechanisms of action].
    Kowalewska E; Litwinienko G
    Postepy Biochem; 2010; 56(3):274-83. PubMed ID: 21117315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical and cellular antioxidant activity of two novel peptides designed based on glutathione structure.
    Gu L; Zhao M; Li W; You L; Wang J; Wang H; Ren J
    Food Chem Toxicol; 2012 Nov; 50(11):4085-91. PubMed ID: 22940538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay.
    Apak R; Güçlü K; Demirata B; Ozyürek M; Celik SE; Bektaşoğlu B; Berker KI; Ozyurt D
    Molecules; 2007 Jul; 12(7):1496-547. PubMed ID: 17909504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance liquid chromatographic method to evaluate the hydrogen atom transfer during reaction between 1,1-diphenyl-2-picryl-hydrazyl radical and antioxidants.
    Boudier A; Tournebize J; Bartosz G; El Hani S; Bengueddour R; Sapin-Minet A; Leroy P
    Anal Chim Acta; 2012 Jan; 711():97-106. PubMed ID: 22152802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: a joint experimental and theoretical study.
    Trouillas P; Marsal P; Svobodová A; Vostálová J; Gazák R; Hrbác J; Sedmera P; Kren V; Lazzaroni R; Duroux JL; Walterová D
    J Phys Chem A; 2008 Feb; 112(5):1054-63. PubMed ID: 18193843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Applications for in Vitro Antioxidant Activity Assay.
    Bunaciu AA; Danet AF; Fleschin Ş; Aboul-Enein HY
    Crit Rev Anal Chem; 2016 Sep; 46(5):389-99. PubMed ID: 26575594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant Activity/Capacity Measurement. 3. Reactive Oxygen and Nitrogen Species (ROS/RNS) Scavenging Assays, Oxidative Stress Biomarkers, and Chromatographic/Chemometric Assays.
    Apak R; Özyürek M; Güçlü K; Çapanoğlu E
    J Agric Food Chem; 2016 Feb; 64(5):1046-70. PubMed ID: 26689748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Issues in Antioxidant Measurement.
    Apak R
    J Agric Food Chem; 2019 Aug; 67(33):9187-9202. PubMed ID: 31259552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidative Reaction of Carotenes against Peroxidation of Fatty Acids Initiated by Nitrogen Dioxide: A Theoretical Study.
    Chen SJ; Huang LY; Hu CH
    J Phys Chem B; 2015 Jul; 119(30):9640-50. PubMed ID: 26106906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apolar Radical Initiated Conjugated Autoxidizable Triene (ApoCAT) Assay: Effects of Oxidant Locations on Antioxidant Capacities and Interactions.
    Panya A; Temthawee W; Phonsatta N; Charoensuk D; Deetae P; Visessanguan W; Decker EA
    J Agric Food Chem; 2015 Sep; 63(34):7546-55. PubMed ID: 26273904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional predictions of antioxidant activity and UV spectral features of nasutin A, isonasutin, ellagic acid, and one of its possible derivatives.
    Mazzone G; Toscano M; Russo N
    J Agric Food Chem; 2013 Oct; 61(40):9650-7. PubMed ID: 24024615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of antioxidant capacity in vitro and in vivo.
    Niki E
    Free Radic Biol Med; 2010 Aug; 49(4):503-15. PubMed ID: 20416370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers.
    Apak R; Güçlü K; Ozyürek M; Bektaşoğlu B; Bener M
    Methods Mol Biol; 2010; 594():215-39. PubMed ID: 20072920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow hydrogen atom self-exchange between Os(IV) anilide and Os(III) aniline complexes: relationships with electron and proton transfer self-exchange.
    Soper JD; Mayer JM
    J Am Chem Soc; 2003 Oct; 125(40):12217-29. PubMed ID: 14519007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity.
    Xie J; Schaich KM
    J Agric Food Chem; 2014 May; 62(19):4251-60. PubMed ID: 24738928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.