These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 26805446)

  • 1. Effects of nanomaterials on marine invertebrates.
    Canesi L; Corsi I
    Sci Total Environ; 2016 Sep; 565():933-940. PubMed ID: 26805446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins.
    Canesi L; Ciacci C; Fabbri R; Balbi T; Salis A; Damonte G; Cortese K; Caratto V; Monopoli MP; Dawson K; Bergami E; Corsi I
    Environ Res; 2016 Oct; 150():73-81. PubMed ID: 27257827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bivalve molluscs as a unique target group for nanoparticle toxicity.
    Canesi L; Ciacci C; Fabbri R; Marcomini A; Pojana G; Gallo G
    Mar Environ Res; 2012 May; 76():16-21. PubMed ID: 21767873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2).
    Canesi L; Fabbri R; Gallo G; Vallotto D; Marcomini A; Pojana G
    Aquat Toxicol; 2010 Oct; 100(2):168-77. PubMed ID: 20444507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches.
    Matranga V; Corsi I
    Mar Environ Res; 2012 May; 76():32-40. PubMed ID: 22391237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus.
    Canesi L; Ciacci C; Bergami E; Monopoli MP; Dawson KA; Papa S; Canonico B; Corsi I
    Mar Environ Res; 2015 Oct; 111():34-40. PubMed ID: 26115607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of nanoplastics with extracellular polymeric substances (EPS) in the aquatic environment: A special reference to eco-corona formation and associated impacts.
    Junaid M; Wang J
    Water Res; 2021 Aug; 201():117319. PubMed ID: 34130084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs.
    Handy RD; Owen R; Valsami-Jones E
    Ecotoxicology; 2008 Jul; 17(5):315-25. PubMed ID: 18408994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles.
    Poirier I; Kuhn L; Demortière A; Mirvaux B; Hammann P; Chicher J; Caplat C; Pallud M; Bertrand M
    J Proteomics; 2016 Oct; 148():213-27. PubMed ID: 27523480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna.
    Nasser F; Lynch I
    J Proteomics; 2016 Mar; 137():45-51. PubMed ID: 26376098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Toxicity of Nanoparticles to Organisms in Freshwater.
    Lekamge S; Ball AS; Shukla R; Nugegoda D
    Rev Environ Contam Toxicol; 2020; 248():1-80. PubMed ID: 30413977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates.
    Tourinho PS; van Gestel CA; Lofts S; Svendsen C; Soares AM; Loureiro S
    Environ Toxicol Chem; 2012 Aug; 31(8):1679-92. PubMed ID: 22573562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting the toxicity of trace metals to fertilization success in broadcast spawning marine invertebrates: A review.
    Hudspith M; Reichelt-Brushett A; Harrison PL
    Aquat Toxicol; 2017 Mar; 184():1-13. PubMed ID: 28063936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver nanoparticles: behaviour and effects in the aquatic environment.
    Fabrega J; Luoma SN; Tyler CR; Galloway TS; Lead JR
    Environ Int; 2011 Feb; 37(2):517-31. PubMed ID: 21159383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabricated nanoparticles: current status and potential phytotoxic threats.
    Yadav T; Mungray AA; Mungray AK
    Rev Environ Contam Toxicol; 2014; 230():83-110. PubMed ID: 24609519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: An overview.
    Rocha TL; Gomes T; Sousa VS; Mestre NC; Bebianno MJ
    Mar Environ Res; 2015 Oct; 111():74-88. PubMed ID: 26152602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of nickel toxicity to fish and invertebrates in marine and estuarine waters.
    Blewett TA; Leonard EM
    Environ Pollut; 2017 Apr; 223():311-322. PubMed ID: 28122673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of metal and metal oxide nanoparticles on marine organisms.
    Baker TJ; Tyler CR; Galloway TS
    Environ Pollut; 2014 Mar; 186():257-71. PubMed ID: 24359692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental impact of engineered carbon nanoparticles: from releases to effects on the aquatic biota.
    Mottier A; Mouchet F; Pinelli É; Gauthier L; Flahaut E
    Curr Opin Biotechnol; 2017 Aug; 46():1-6. PubMed ID: 28088098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes.
    Canesi L; Ciacci C; Vallotto D; Gallo G; Marcomini A; Pojana G
    Aquat Toxicol; 2010 Jan; 96(2):151-8. PubMed ID: 19900724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.