These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26805513)

  • 41. How good can CVD-grown monolayer graphene be?
    Chen B; Huang H; Ma X; Huang L; Zhang Z; Peng LM
    Nanoscale; 2014 Dec; 6(24):15255-61. PubMed ID: 25381813
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strain Gauges Based on CVD Graphene Layers and Exfoliated Graphene Nanoplatelets with Enhanced Reproducibility and Scalability for Large Quantities.
    Yokaribas V; Wagner S; Schneider DS; Friebertshäuser P; Lemme MC; Fritzen CP
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29258260
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stretch-induced stiffness enhancement of graphene grown by chemical vapor deposition.
    Lin QY; Jing G; Zhou YB; Wang YF; Meng J; Bie YQ; Yu DP; Liao ZM
    ACS Nano; 2013 Feb; 7(2):1171-7. PubMed ID: 23331047
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support.
    Lin X; Liu P; Wei Y; Li Q; Wang J; Wu Y; Feng C; Zhang L; Fan S; Jiang K
    Nat Commun; 2013; 4():2920. PubMed ID: 24356342
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasticized Polystyrene by Addition of -Diene Based Molecules for Defect-Less CVD Graphene Transfer.
    Nasir T; Kim BJ; Hassnain M; Lee SH; Jeong BJ; Choi IJ; Kim Y; Yu HK; Choi JY
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32824487
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Large-scale quantification of CVD graphene surface coverage.
    Ambrosi A; Bonanni A; Sofer Z; Pumera M
    Nanoscale; 2013 Mar; 5(6):2379-87. PubMed ID: 23396554
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic.
    Lee WH; Suk JW; Lee J; Hao Y; Park J; Yang JW; Ha HW; Murali S; Chou H; Akinwande D; Kim KS; Ruoff RS
    ACS Nano; 2012 Feb; 6(2):1284-90. PubMed ID: 22263853
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.
    Zheng C; Huang L; Zhang H; Sun Z; Zhang Z; Zhang GJ
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16953-9. PubMed ID: 26203889
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Toward Clean Suspended CVD Graphene.
    Yulaev A; Cheng G; Walker AR; Vlassiouk IV; Myers A; Leite MS; Kolmakov A
    RSC Adv; 2016; 6(87):83954-83962. PubMed ID: 27920903
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Contact properties to CVD-graphene on GaAs substrates for optoelectronic applications.
    Babichev AV; Gasumyants VE; Egorov AY; Vitusevich S; Tchernycheva M
    Nanotechnology; 2014 Aug; 25(33):335707. PubMed ID: 25074754
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Suspended monolayer graphene under true uniaxial deformation.
    Polyzos I; Bianchi M; Rizzi L; Koukaras EN; Parthenios J; Papagelis K; Sordan R; Galiotis C
    Nanoscale; 2015 Aug; 7(30):13033-42. PubMed ID: 26172517
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conversion of self-assembled monolayers into nanocrystalline graphene: structure and electric transport.
    Turchanin A; Weber D; Büenfeld M; Kisielowski C; Fistul MV; Efetov KB; Weimann T; Stosch R; Mayer J; Gölzhäuser A
    ACS Nano; 2011 May; 5(5):3896-904. PubMed ID: 21491948
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oil boundary approach for sublimation enabled camphor mediated graphene transfer.
    Chandrashekar BN; Cai N; Liu LWY; Smitha AS; Wu Z; Chen P; Shi R; Wang W; Wang J; Tang C; Cheng C
    J Colloid Interface Sci; 2019 Jun; 546():11-19. PubMed ID: 30901688
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Residue-free suspended graphene transferred by perforated template.
    Kim SM; Lee CK; Yoon SU; Kim KS; Hwangbo Y
    Nanotechnology; 2022 Jan; 33(16):. PubMed ID: 34952534
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Clean transfer of graphene for isolation and suspension.
    Lin YC; Jin C; Lee JC; Jen SF; Suenaga K; Chiu PW
    ACS Nano; 2011 Mar; 5(3):2362-8. PubMed ID: 21351739
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In-Plane Thermal Conductivity of Polycrystalline Chemical Vapor Deposition Graphene with Controlled Grain Sizes.
    Lee W; Kihm KD; Kim HG; Shin S; Lee C; Park JS; Cheon S; Kwon OM; Lim G; Lee W
    Nano Lett; 2017 Apr; 17(4):2361-2366. PubMed ID: 28252971
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Large-scale arrays of single- and few-layer MoS2 nanomechanical resonators.
    Jia H; Yang R; Nguyen AE; Alvillar SN; Empante T; Bartels L; Feng PX
    Nanoscale; 2016 May; 8(20):10677-85. PubMed ID: 27150738
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanoelectromechanical Temperature Sensor Based on Piezoresistive Properties of Suspended Graphene Film.
    Han S; Zhou S; Mei L; Guo M; Zhang H; Li Q; Zhang S; Niu Y; Zhuang Y; Geng W; Bi K; Chou X
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985997
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition.
    Ryu J; Kim Y; Won D; Kim N; Park JS; Lee EK; Cho D; Cho SP; Kim SJ; Ryu GH; Shin HA; Lee Z; Hong BH; Cho S
    ACS Nano; 2014 Jan; 8(1):950-6. PubMed ID: 24358985
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultraclean and Facile Patterning of CVD Graphene by a UV-Light-Assisted Dry Transfer Method.
    Hung YH; Hsieh TC; Lu WC; Su CY
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4826-4834. PubMed ID: 36646630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.