These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 26805514)
1. DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities. Boyer AS; Walter D; Sørensen CS Semin Cancer Biol; 2016 Jun; 37-38():16-25. PubMed ID: 26805514 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of Oncogene-Induced Replication Stress: Jigsaw Falling into Place. Kotsantis P; Petermann E; Boulton SJ Cancer Discov; 2018 May; 8(5):537-555. PubMed ID: 29653955 [TBL] [Abstract][Full Text] [Related]
3. Replication fork instability and the consequences of fork collisions from rereplication. Alexander JL; Orr-Weaver TL Genes Dev; 2016 Oct; 30(20):2241-2252. PubMed ID: 27898391 [TBL] [Abstract][Full Text] [Related]
4. Preserving replication fork integrity and competence via the homologous recombination pathway. Ait Saada A; Lambert SAE; Carr AM DNA Repair (Amst); 2018 Nov; 71():135-147. PubMed ID: 30220600 [TBL] [Abstract][Full Text] [Related]
5. Cellular Responses to Widespread DNA Replication Stress. Nickoloff JA; Jaiswal AS; Sharma N; Williamson EA; Tran MT; Arris D; Yang M; Hromas R Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069223 [TBL] [Abstract][Full Text] [Related]
6. DNA replication stress and cancer: cause or cure? Taylor EM; Lindsay HD Future Oncol; 2016 Jan; 12(2):221-37. PubMed ID: 26616915 [TBL] [Abstract][Full Text] [Related]
7. Uncoupling fork speed and origin activity to identify the primary cause of replicative stress phenotypes. Rodriguez-Acebes S; Mourón S; Méndez J J Biol Chem; 2018 Aug; 293(33):12855-12861. PubMed ID: 29959228 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of dealing with DNA damage-induced replication problems. Budzowska M; Kanaar R Cell Biochem Biophys; 2009; 53(1):17-31. PubMed ID: 19034694 [TBL] [Abstract][Full Text] [Related]
9. The Protective Role of Dormant Origins in Response to Replicative Stress. Courtot L; Hoffmann JS; Bergoglio V Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30424570 [TBL] [Abstract][Full Text] [Related]
10. Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Davies SL; North PS; Hickson ID Nat Struct Mol Biol; 2007 Jul; 14(7):677-9. PubMed ID: 17603497 [TBL] [Abstract][Full Text] [Related]
11. Maintaining genome stability at the replication fork. Branzei D; Foiani M Nat Rev Mol Cell Biol; 2010 Mar; 11(3):208-19. PubMed ID: 20177396 [TBL] [Abstract][Full Text] [Related]
12. The Intra-S Checkpoint Responses to DNA Damage. Iyer DR; Rhind N Genes (Basel); 2017 Feb; 8(2):. PubMed ID: 28218681 [TBL] [Abstract][Full Text] [Related]
18. Replication fork dynamics and the DNA damage response. Jones RM; Petermann E Biochem J; 2012 Apr; 443(1):13-26. PubMed ID: 22417748 [TBL] [Abstract][Full Text] [Related]
19. Regulation of replication fork speed: Mechanisms and impact on genomic stability. Merchut-Maya JM; Bartek J; Maya-Mendoza A DNA Repair (Amst); 2019 Sep; 81():102654. PubMed ID: 31320249 [TBL] [Abstract][Full Text] [Related]
20. Replication fork recovery and regulation of common fragile sites stability. Franchitto A; Pichierri P Cell Mol Life Sci; 2014 Dec; 71(23):4507-17. PubMed ID: 25216703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]