These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 26805599)

  • 1. General theory of peak compression in liquid chromatography.
    Gritti F
    J Chromatogr A; 2016 Feb; 1433():114-22. PubMed ID: 26805599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined solvent- and non-uniform temperature-programmed gradient liquid chromatography. I - A theoretical investigation.
    Gritti F
    J Chromatogr A; 2016 Nov; 1473():38-47. PubMed ID: 27814914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extension of the linear solvent strength retention model including a parameter that describes the elution strength changes in liquid chromatography.
    Baeza-Baeza JJ; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Mar; 1615():460757. PubMed ID: 31831147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact peak compression factor in linear gradient elution. I. Theory.
    Gritti F; Guiochon G
    J Chromatogr A; 2008 Nov; 1212(1-2):35-40. PubMed ID: 18951548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peak dispersion in gradient elution: An insight based on the plate model.
    Baeza-Baeza JJ; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Feb; 1613():460670. PubMed ID: 31732158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peak compression in linear gradient elution liquid chromatography.
    Hao W; Wang K; Yue B; Chen Q; Huang Y; Yu J; Li D
    J Chromatogr A; 2020 May; 1619():460908. PubMed ID: 32005528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of gradient steepness on the kinetic performance limits and peak compression for reversed-phase gradient separations of small molecules.
    Vaňková N; De Vos J; Tyteca E; Desmet G; Edge T; Česlová L; Česla P; Eeltink S
    J Chromatogr A; 2015 Aug; 1409():152-8. PubMed ID: 26216237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of peak compression in gradient elution of liquid chromatography].
    Hao W; Liu L; Shen Q
    Se Pu; 2021 Jan; 39(1):10-14. PubMed ID: 34227354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the pre-elution of solute in initial mobile phase on retention time and peak compression under linear gradient elution.
    Hao W; Wang K; Yue B; Chen Q; Huang Y; Yu J; Li D
    J Chromatogr A; 2020 May; 1618():460858. PubMed ID: 31954543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bandwidth in gradient elution chromatography with a retained organic modifier.
    Gritti F; Guiochon G
    J Chromatogr A; 2007 Mar; 1145(1-2):67-82. PubMed ID: 17280680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic advantages of packed capillaries over narrow-bore columns in very high-pressure gradient liquid chromatography.
    Gritti F; McDonald T; Gilar M
    J Chromatogr A; 2016 Jun; 1451():107-119. PubMed ID: 27185055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metrics of separation performance in chromatography: Part 3: General separation performance of linear solvent strength gradient liquid chromatography.
    Blumberg LM; Desmet G
    J Chromatogr A; 2015 Sep; 1413():9-21. PubMed ID: 26316033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of axial temperature gradient on chromatographic efficiency under adiabatic conditions.
    Horváth K; Horváth S; Lukács D
    J Chromatogr A; 2017 Feb; 1483():80-85. PubMed ID: 28062080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methacrylate monolithic capillary columns for gradient peptide separations.
    Pruim P; Ohman M; Huo Y; Schoenmakers PJ; Kok WT
    J Chromatogr A; 2008 Oct; 1208(1-2):109-15. PubMed ID: 18771770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benefits of solvent concentration pulses in retention time modelling of liquid chromatography.
    Navarro-Huerta JA; Gisbert-Alonso A; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2019 Jul; 1597():76-88. PubMed ID: 30902430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimisation of gradient elution with serially-coupled columns Part II: Multi-linear gradients.
    Ortiz-Bolsico C; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2014 Dec; 1373():51-60. PubMed ID: 25465000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental band compression factor of a neutral compound under high pressure gradient elution.
    Gritti F; Guiochon G
    J Chromatogr A; 2008 Dec; 1215(1-2):64-73. PubMed ID: 19027118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of elution profiles in liquid chromatography-I: Gradient elution conditions, and with mismatched injection and mobile phase solvents.
    Jeong LN; Sajulga R; Forte SG; Stoll DR; Rutan SC
    J Chromatogr A; 2016 Jul; 1457():41-9. PubMed ID: 27345210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Closed form approximations to predict retention times and peak widths in gradient elution under conditions of sample volume overload and sample solvent mismatch.
    Rutan SC; Jeong LN; Carr PW; Stoll DR; Weber SG
    J Chromatogr A; 2021 Sep; 1653():462376. PubMed ID: 34293516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of elution profiles in liquid chromatography - III. Stationary phase gradients.
    Jeong LN; Rutan SC
    J Chromatogr A; 2018 Aug; 1564():128-136. PubMed ID: 29937121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.