These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 26805599)
21. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients. Wiese S; Teutenberg T; Schmidt TC J Chromatogr A; 2011 Sep; 1218(39):6898-906. PubMed ID: 21872258 [TBL] [Abstract][Full Text] [Related]
22. Possibilities of retention prediction in fast gradient liquid chromatography. Part 3: Short silica monolithic columns. Jandera P; Hájek T J Chromatogr A; 2015 Sep; 1410():76-89. PubMed ID: 26239700 [TBL] [Abstract][Full Text] [Related]
23. Band broadening along gradient reversed phase columns: a potential gain in resolution factor. Gritti F; Guiochon G J Chromatogr A; 2014 May; 1342():24-9. PubMed ID: 24735602 [TBL] [Abstract][Full Text] [Related]
24. [General retention time formulae for gradient liquid chromatography with any combination of isocratic, linear and stepwise gradients]. Hao W; Di B; Yang Y; Chen Q; Wang J Se Pu; 2010 Jun; 28(6):541-6. PubMed ID: 20873572 [TBL] [Abstract][Full Text] [Related]
25. Retention prediction of monoamine neurotransmitters in gradient liquid chromatography. Urban J; Nechvátalová M; Hekerle L J Sep Sci; 2022 Sep; 45(17):3319-3327. PubMed ID: 35855653 [TBL] [Abstract][Full Text] [Related]
27. Peak width in liquid chromatography with exponential retention and linear program preceded by isocratic hold. Blumberg LM J Chromatogr A; 2023 Jun; 1699():464019. PubMed ID: 37119711 [TBL] [Abstract][Full Text] [Related]
28. Theory of linear focusing in chromatographic columns with exponential retention. Part 2: Analysis of special cases. Blumberg LM J Chromatogr A; 2023 Oct; 1709():464374. PubMed ID: 37741222 [TBL] [Abstract][Full Text] [Related]
29. The ultimate band compression factor in gradient elution chromatography. Gritti F; Guiochon G J Chromatogr A; 2008 Jan; 1178(1-2):79-91. PubMed ID: 18062981 [TBL] [Abstract][Full Text] [Related]
31. Approaches to model the retention and peak profile in linear gradient reversed-phase liquid chromatography. Baeza-Baeza JJ; Ortiz-Bolsico C; Torres-Lapasió JR; García-Álvarez-Coque MC J Chromatogr A; 2013 Apr; 1284():28-35. PubMed ID: 23453677 [TBL] [Abstract][Full Text] [Related]
32. Graphical Method for Choosing Optimized Conditions Given a Pump Pressure and a Particle Diameter in Liquid Chromatography. Groskreutz SR; Weber SG Anal Chem; 2016 Dec; 88(23):11742-11749. PubMed ID: 27790917 [TBL] [Abstract][Full Text] [Related]
33. On the feasibility to conduct gradient liquid chromatography separations in narrow-bore columns at pressures up to 2000bar. De Pauw R; Swier T; Degreef B; Desmet G; Broeckhoven K J Chromatogr A; 2016 Nov; 1473():48-55. PubMed ID: 28029367 [TBL] [Abstract][Full Text] [Related]
34. Analytical solutions of the ideal model for gradient liquid chromatography. Hao W; Zhang X; Hou K Anal Chem; 2006 Nov; 78(22):7828-40. PubMed ID: 17105177 [TBL] [Abstract][Full Text] [Related]
37. Repetitive injection method: a tool for investigation of injection zone formation and its compression in microfluidic liquid chromatography. Gilar M; McDonald TS; Roman G; Johnson JS; Murphy JP; Jorgenson JW J Chromatogr A; 2015 Feb; 1381():110-7. PubMed ID: 25604268 [TBL] [Abstract][Full Text] [Related]