These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26806116)

  • 21. Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries.
    Wang D; Yu Y; He H; Wang J; Zhou W; Abruña HD
    ACS Nano; 2015 Feb; 9(2):1775-81. PubMed ID: 25602513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional nanocomposites with Co
    Wang F; Long Y; Zong J; Zhao M; Yang S; Song X
    Dalton Trans; 2019 Jun; 48(23):8375-8383. PubMed ID: 31112159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon-Encapsulated Co3O4 Nanoparticles as Anode Materials with Super Lithium Storage Performance.
    Leng X; Wei S; Jiang Z; Lian J; Wang G; Jiang Q
    Sci Rep; 2015 Nov; 5():16629. PubMed ID: 26564802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries.
    Wang HE; Jin J; Cai Y; Xu JM; Chen DS; Zheng XF; Deng Z; Li Y; Bello I; Su BL
    J Colloid Interface Sci; 2014 Mar; 417():144-51. PubMed ID: 24407670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co
    Wang L; Yuan YF; Zhang XT; Chen Q; Guo SY
    Nanotechnology; 2019 Aug; 30(35):355401. PubMed ID: 31067517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ge/GeO2-Ordered Mesoporous Carbon Nanocomposite for Rechargeable Lithium-Ion Batteries with a Long-Term Cycling Performance.
    Zeng L; Huang X; Chen X; Zheng C; Qian Q; Chen Q; Wei M
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):232-9. PubMed ID: 26651359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile and cost effective synthesis of mesoporous spinel NiCo2O4 as an anode for high lithium storage capacity.
    Jadhav HS; Kalubarme RS; Park CN; Kim J; Park CJ
    Nanoscale; 2014 Sep; 6(17):10071-6. PubMed ID: 25033093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene-Embedded Co
    Jing M; Zhou M; Li G; Chen Z; Xu W; Chen X; Hou Z
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9662-9668. PubMed ID: 28256819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of Co
    Wang L; Yuan YF; Chen Q; Zheng YQ; Yin SM; Guo SY
    Nanotechnology; 2019 Oct; 30(43):435402. PubMed ID: 31300617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CuGeO₃ nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu S; Wang R; Wang Z; Lin Z
    Nanoscale; 2014 Jul; 6(14):8350-8. PubMed ID: 24934278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mesoporous Manganese Phosphonate Nanorods as a Prospective Anode for Lithium-Ion Batteries.
    Mei P; Lee J; Pramanik M; Alshehri A; Kim J; Henzie J; Kim JH; Yamauchi Y
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19739-19745. PubMed ID: 29808983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries.
    Wu X; Li S; Wang B; Liu J; Yu M
    Phys Chem Chem Phys; 2016 Feb; 18(6):4505-12. PubMed ID: 26796603
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Germanium anode with excellent lithium storage performance in a germanium/lithium-cobalt oxide lithium-ion battery.
    Li X; Yang Z; Fu Y; Qiao L; Li D; Yue H; He D
    ACS Nano; 2015 Feb; 9(2):1858-67. PubMed ID: 25629917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries.
    Zhou L; Wu HB; Wang Z; Lou XW
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4853-7. PubMed ID: 22077330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials.
    Walter M; Zünd T; Kovalenko MV
    Nanoscale; 2015 May; 7(20):9158-63. PubMed ID: 25941034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile fabrication of porous Ni(x)Co(3-x)O4 nanosheets with enhanced electrochemical performance as anode materials for Li-ion batteries.
    Zheng F; Zhu D; Chen Q
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9256-64. PubMed ID: 24853470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal dicarboxylates: new anode materials for lithium-ion batteries with good cycling performance.
    Fei H; Liu X; Li Z; Feng W
    Dalton Trans; 2015 Jun; 44(21):9909-14. PubMed ID: 25940917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wintersweet-flower-like CoFe2O4/MWCNTs hybrid material for high-capacity reversible lithium storage.
    Wang Y; Park J; Sun B; Ahn H; Wang G
    Chem Asian J; 2012 Aug; 7(8):1940-6. PubMed ID: 22593078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries.
    Yang T; Lu B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4115-21. PubMed ID: 24448608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.