These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26806215)

  • 1. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink.
    Hwang HJ; Oh KH; Kim HS
    Sci Rep; 2016 Jan; 6():19696. PubMed ID: 26806215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics.
    Joo SJ; Hwang HJ; Kim HS
    Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes.
    Yu MH; Joo SJ; Kim HS
    Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic sintering via flash white light combined with deep UV and NIR for SrTiO
    Hwang HJ; Lim SC; Ok KC; Park JS; Kim HS
    Nanotechnology; 2016 Dec; 27(50):505209. PubMed ID: 27861167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper Nanoparticle/Multiwalled Carbon Nanotube Composite Films with High Electrical Conductivity and Fatigue Resistance Fabricated via Flash Light Sintering.
    Hwang HJ; Joo SJ; Kim HS
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25413-23. PubMed ID: 26505908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique.
    Joo SJ; Park SH; Moon CJ; Kim HS
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5674-84. PubMed ID: 25714508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity.
    Chung WH; Hwang YT; Lee SH; Kim HS
    Nanotechnology; 2016 May; 27(20):205704. PubMed ID: 27070756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensive Plasmonic Flash Light Sintering of Copper Nanoinks Using a Band-Pass Light Filter for Highly Electrically Conductive Electrodes in Printed Electronics.
    Hwang YT; Chung WH; Jang YR; Kim HS
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8591-9. PubMed ID: 26975337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics.
    Hwang HJ; Chung WH; Kim HS
    Nanotechnology; 2012 Dec; 23(48):485205. PubMed ID: 23138346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics.
    Chung WH; Hwang HJ; Lee SH; Kim HS
    Nanotechnology; 2013 Jan; 24(3):035202. PubMed ID: 23263030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast near infrared sintering of silver nanoparticle ink and applications for flexible hybrid circuits.
    Gu W; Yuan W; Zhong T; Wu X; Zhou C; Lin J; Cui Z
    RSC Adv; 2018 Aug; 8(53):30215-30222. PubMed ID: 35546861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.
    Wang BY; Yoo TH; Song YW; Lim DS; Oh YJ
    ACS Appl Mater Interfaces; 2013 May; 5(10):4113-9. PubMed ID: 23586602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intense Pulsed Light Annealing Process of Indium-Gallium-Zinc-Oxide Semiconductors via Flash White Light Combined with Deep-UV and Near-Infrared Drying for High-Performance Thin-Film Transistors.
    Moon CJ; Kim HS
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13380-13388. PubMed ID: 30882197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sintering Copper Nanoparticles with Photonic Additive for Printed Conductive Patterns by Intense Pulsed Light.
    Chung WY; Lai YC; Yonezawa T; Liao YC
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31349711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes.
    Chung WH; Kim SH; Kim HS
    Sci Rep; 2016 Aug; 6():32086. PubMed ID: 27553755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Printing Metal-mesh Transparent Conductive Films with Lower Energy Photonically Sintered Copper/tin Ink.
    Chen X; Wu X; Shao S; Zhuang J; Xie L; Nie S; Su W; Chen Z; Cui Z
    Sci Rep; 2017 Oct; 7(1):13239. PubMed ID: 29038555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of complex agent and sintering temperature on conductive copper complex paste.
    Naderi-Samani H; Razavi RS; Mozaffarinia R
    Heliyon; 2022 Dec; 8(12):e12624. PubMed ID: 36619403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic Flash Sintering of Ink-Jet-Printed Back Electrodes for Organic Photovoltaic Applications.
    Polino G; Shanmugam S; Bex GJ; Abbel R; Brunetti F; Di Carlo A; Andriessen R; Galagan Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2325-35. PubMed ID: 26704172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.