These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26806215)

  • 21. Ultra-High Speed Fabrication of TiO2 Photoanode by Flash Light for Dye-Sensitized Solar Cell.
    Hwang HJ; Kim HS
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5028-34. PubMed ID: 26373072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effectiveness of Oxygen during Sintering of Silver Thin Films Derived by Nanoparticle Ink.
    Feng F; Hong H; Gao X; Ren T; Ma Y; Feng P
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-Thermal-Budget Photonic Sintering of Hybrid Pastes Containing Submicron/Nano CuO/Cu
    Chiu PH; Cheng WH; Lee MT; Yasuda K; Song JM
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly conductive copper films prepared by multilayer sintering of nanoparticles synthesized via arc discharge.
    Fu Q; Li W; Kruis FE
    Nanotechnology; 2023 Mar; 34(22):. PubMed ID: 36805345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Printed highly conductive Cu films with strong adhesion enabled by low-energy photonic sintering on low-Tg flexible plastic substrate.
    Wu X; Shao S; Chen Z; Cui Z
    Nanotechnology; 2017 Jan; 28(3):035203. PubMed ID: 27941231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cu salt ink formulation for printed electronics using photonic sintering.
    Araki T; Sugahara T; Jiu J; Nagao S; Nogi M; Koga H; Uchida H; Shinozaki K; Suganuma K
    Langmuir; 2013 Sep; 29(35):11192-7. PubMed ID: 23919600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution phase synthesis and intense pulsed light sintering and reduction of a copper oxide ink with an encapsulating nickel oxide barrier.
    Jha M; Dharmadasa R; Draper GL; Sherehiy A; Sumanasekera G; Amos D; Druffel T
    Nanotechnology; 2015 May; 26(17):175601. PubMed ID: 25854751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles.
    Liu J; Chen H; Ji H; Li M
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33289-33298. PubMed ID: 27934145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photo-Sintered Silver Thin Films by a High-Power UV-LED Module for Flexible Electronic Applications.
    Kim M; Jee H; Lee J
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nano-Silver Ink of High Conductivity and Low Sintering Temperature for Paper Electronics.
    Mo L; Guo Z; Wang Z; Yang L; Fang Y; Xin Z; Li X; Chen Y; Cao M; Zhang Q; Li L
    Nanoscale Res Lett; 2019 Jun; 14(1):197. PubMed ID: 31172304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasma-Induced Decomposition of Copper Complex Ink for the Formation of Highly Conductive Copper Tracks on Heat-Sensitive Substrates.
    Farraj Y; Smooha A; Kamyshny A; Magdassi S
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8766-8773. PubMed ID: 28229585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature.
    Deng D; Jin Y; Cheng Y; Qi T; Xiao F
    ACS Appl Mater Interfaces; 2013 May; 5(9):3839-46. PubMed ID: 23578010
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Filtration-induced production of conductive/robust Cu films on cellulose paper by low-temperature sintering in air.
    Sakurai S; Akiyama Y; Kawasaki H
    R Soc Open Sci; 2018 Jul; 5(7):172417. PubMed ID: 30109061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure.
    Park HJ; Jo Y; Cho MK; Young Woo J; Kim D; Lee SY; Choi Y; Jeong S
    Nanoscale; 2018 Mar; 10(11):5047-5053. PubMed ID: 29411848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inkjet Fabrication of Copper Patterns for Flexible Electronics: Using Paper with Active Precoatings.
    Öhlund T; Schuppert AK; Hummelgård M; Bäckström J; Nilsson HE; Olin H
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18273-82. PubMed ID: 26245645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A simple sonochemical approach for synthesis and characterization of Zn2SiO4 nanostructures.
    Masjedi-Arani M; Salavati-Niasari M
    Ultrason Sonochem; 2016 Mar; 29():226-35. PubMed ID: 26585002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of Elemental Copper by Intense Pulsed Light Processing of a Copper Nitrate Hydroxide Ink.
    Draper GL; Dharmadasa R; Staats ME; Lavery BW; Druffel T
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16478-85. PubMed ID: 26154246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct intense pulsed light sintering of inkjet-printed copper oxide layers within six milliseconds.
    Kang H; Sowade E; Baumann RR
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1682-7. PubMed ID: 24433059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A low sintering temperature and electrical performance of nanoparticle copper ink for use in ink-jet printing.
    Cho MS; Choi WH; Kim SG; Kim IH; Lee Y
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6888-91. PubMed ID: 21137818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of Hybrid Ink Formulation and IPL Sintering Process for Ink-Jet 3D Printing.
    Lee JY; Choi CS; Hwang KT; Han KS; Kim JH; Nahm S; Kim BS
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34069153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.