These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 26806341)

  • 1. Computer vision for high content screening.
    Kraus OZ; Frey BJ
    Crit Rev Biochem Mol Biol; 2016; 51(2):102-9. PubMed ID: 26806341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automated feedback system with the hybrid model of scoring and classification for solving over-segmentation problems in RNAi high content screening.
    Li F; Zhou X; Ma J; Wong ST
    J Microsc; 2007 May; 226(Pt 2):121-32. PubMed ID: 17444941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning and computer vision approaches for phenotypic profiling.
    Grys BT; Lo DS; Sahin N; Kraus OZ; Morris Q; Boone C; Andrews BJ
    J Cell Biol; 2017 Jan; 216(1):65-71. PubMed ID: 27940887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Cell Phenotype Classification Using Deep Convolutional Neural Networks.
    Dürr O; Sick B
    J Biomol Screen; 2016 Oct; 21(9):998-1003. PubMed ID: 26950929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classifying and segmenting microscopy images with deep multiple instance learning.
    Kraus OZ; Ba JL; Frey BJ
    Bioinformatics; 2016 Jun; 32(12):i52-i59. PubMed ID: 27307644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HCS Methodology for Helping in Lab Scale Image-Based Assays.
    Soriano J; Mata G; Megias D
    Methods Mol Biol; 2019; 2040():331-356. PubMed ID: 31432486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of image segmentation on high-content screening data quality for SK-BR-3 cells.
    Hill AA; LaPan P; Li Y; Haney S
    BMC Bioinformatics; 2007 Sep; 8():340. PubMed ID: 17868449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast, fully automated cell segmentation algorithm for high-throughput and high-content screening.
    Fenistein D; Lenseigne B; Christophe T; Brodin P; Genovesio A
    Cytometry A; 2008 Oct; 73(10):958-64. PubMed ID: 18752283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking feature selection methods for compressing image information in high-content screening.
    Siegismund D; Fassler M; Heyse S; Steigele S
    SLAS Technol; 2022 Feb; 27(1):85-93. PubMed ID: 35058213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated image analysis for high-content screening and analysis.
    Shariff A; Kangas J; Coelho LP; Quinn S; Murphy RF
    J Biomol Screen; 2010 Aug; 15(7):726-34. PubMed ID: 20488979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning in cell biology - teaching computers to recognize phenotypes.
    Sommer C; Gerlich DW
    J Cell Sci; 2013 Dec; 126(Pt 24):5529-39. PubMed ID: 24259662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quality Control for High-Throughput Imaging Experiments Using Machine Learning in Cellprofiler.
    Bray MA; Carpenter AE
    Methods Mol Biol; 2018; 1683():89-112. PubMed ID: 29082489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.
    Hennig H; Rees P; Blasi T; Kamentsky L; Hung J; Dao D; Carpenter AE; Filby A
    Methods; 2017 Jan; 112():201-210. PubMed ID: 27594698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Neuron Detection in High-Content Fluorescence Microscopy Images Using Machine Learning.
    Mata G; Radojević M; Fernandez-Lozano C; Smal I; Werij N; Morales M; Meijering E; Rubio J
    Neuroinformatics; 2019 Apr; 17(2):253-269. PubMed ID: 30215167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying co-cultured cell phenotypes in high-throughput using pixel-based classification.
    Logan DJ; Shan J; Bhatia SN; Carpenter AE
    Methods; 2016 Mar; 96():6-11. PubMed ID: 26687239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison and optimization of machine learning methods for automated classification of circulating tumor cells.
    Lannin TB; Thege FI; Kirby BJ
    Cytometry A; 2016 Oct; 89(10):922-931. PubMed ID: 27754580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning: A Primer for Radiologists.
    Chartrand G; Cheng PM; Vorontsov E; Drozdzal M; Turcotte S; Pal CJ; Kadoury S; Tang A
    Radiographics; 2017; 37(7):2113-2131. PubMed ID: 29131760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From pixels to insights: Machine learning and deep learning for bioimage analysis.
    Jan M; Spangaro A; Lenartowicz M; Mattiazzi Usaj M
    Bioessays; 2024 Feb; 46(2):e2300114. PubMed ID: 38058114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning approach to discriminate Saccharomyces cerevisiae yeast cells using sophisticated image features.
    Tleis MS; Verbeek FJ
    J Integr Bioinform; 2015 Oct; 12(3):276. PubMed ID: 26673792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid 3D phenotypic analysis of neurons and organoids using data-driven cell segmentation-free machine learning.
    Mergenthaler P; Hariharan S; Pemberton JM; Lourenco C; Penn LZ; Andrews DW
    PLoS Comput Biol; 2021 Feb; 17(2):e1008630. PubMed ID: 33617523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.