These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26806689)

  • 21. Soft tissue deformations explain most of the mechanical work variations of human walking.
    van der Zee TJ; Kuo AD
    J Exp Biol; 2021 Sep; 224(18):. PubMed ID: 34387332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The cost of running uphill: linking organismal and muscle energy use in guinea fowl (Numida meleagris).
    Rubenson J; Henry HT; Dimoulas PM; Marsh RL
    J Exp Biol; 2006 Jul; 209(Pt 13):2395-408. PubMed ID: 16788023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adjustments with running speed reveal neuromuscular adaptations during landing associated with high mileage running training.
    Verheul J; Clansey AC; Lake MJ
    J Appl Physiol (1985); 2017 Mar; 122(3):653-665. PubMed ID: 27932678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparisons of increases in knee and ankle joint moments following an increase in running speed from 8 to 12 to 16km·h(-1.).
    Petersen J; Nielsen RO; Rasmussen S; Sørensen H
    Clin Biomech (Bristol, Avon); 2014 Nov; 29(9):959-64. PubMed ID: 25242200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adjusting muscle function to demand: joint work during acceleration in wild turkeys.
    Roberts TJ; Scales JA
    J Exp Biol; 2004 Nov; 207(Pt 23):4165-74. PubMed ID: 15498962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elastic energy savings and active energy cost in a simple model of running.
    Schroeder RT; Kuo AD
    PLoS Comput Biol; 2021 Nov; 17(11):e1009608. PubMed ID: 34813593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Muscle mechanical advantage of human walking and running: implications for energy cost.
    Biewener AA; Farley CT; Roberts TJ; Temaner M
    J Appl Physiol (1985); 2004 Dec; 97(6):2266-74. PubMed ID: 15258124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The rebound of the body during uphill and downhill running at different speeds.
    Dewolf AH; Peñailillo LE; Willems PA
    J Exp Biol; 2016 Aug; 219(Pt 15):2276-88. PubMed ID: 27207641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The energetic behaviour of the human foot across a range of running speeds.
    Kelly LA; Cresswell AG; Farris DJ
    Sci Rep; 2018 Jul; 8(1):10576. PubMed ID: 30002498
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The metabolic cost of
    van der Zee TJ; Lemaire KK; van Soest AJ
    J Exp Biol; 2019 Apr; 222(Pt 8):. PubMed ID: 30877229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cumulative loads increase at the knee joint with slow-speed running compared to faster running: a biomechanical study.
    Petersen J; Sørensen H; Nielsen RØ
    J Orthop Sports Phys Ther; 2015 Apr; 45(4):316-22. PubMed ID: 25552288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sources of mechanical power for uphill running in humans.
    Roberts TJ; Belliveau RA
    J Exp Biol; 2005 May; 208(Pt 10):1963-70. PubMed ID: 15879076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental estimation of energy absorption during heel strike in human barefoot walking.
    Baines PM; Schwab AL; van Soest AJ
    PLoS One; 2018; 13(6):e0197428. PubMed ID: 29953479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Joint power and kinematics coordination in load carriage running: Implications for performance and injury.
    Liew BX; Morris S; Netto K
    Gait Posture; 2016 Jun; 47():74-9. PubMed ID: 27264407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.
    Huang TW; Shorter KA; Adamczyk PG; Kuo AD
    J Exp Biol; 2015 Nov; 218(Pt 22):3541-50. PubMed ID: 26385330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: I. Organismal metabolism and biomechanics.
    Marsh RL; Ellerby DJ; Henry HT; Rubenson J
    J Exp Biol; 2006 Jun; 209(Pt 11):2050-63. PubMed ID: 16709908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinematic algorithm to determine the energy cost of running with changes of direction.
    Zago M; Esposito F; Rausa G; Limonta E; Corrado F; Rampichini S; Sforza C
    J Biomech; 2018 Jul; 76():189-196. PubMed ID: 29934215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The short-term effects of running on the deformation of knee articular cartilage and its relationship to biomechanical loads at the knee.
    Boocock M; McNair P; Cicuttini F; Stuart A; Sinclair T
    Osteoarthritis Cartilage; 2009 Jul; 17(7):883-90. PubMed ID: 19246217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lower extremity joint kinetics and energetics during backward running.
    DeVita P; Stribling J
    Med Sci Sports Exerc; 1991 May; 23(5):602-10. PubMed ID: 2072839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.