These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 26806787)
1. Treatment of potato farm wastewater with sand filtration. Bosak VK; VanderZaag AC; Crolla A; Kinsley C; Chabot D; Miller SS; Gordon RJ Environ Technol; 2016; 37(13):1597-604. PubMed ID: 26806787 [TBL] [Abstract][Full Text] [Related]
2. The application of GAC sandwich slow sand filtration to remove pharmaceutical and personal care products. Li J; Zhou Q; Campos LC Sci Total Environ; 2018 Sep; 635():1182-1190. PubMed ID: 29710573 [TBL] [Abstract][Full Text] [Related]
3. Wastewater treatment by slow sand filters using uncoated and iron-coated fine sand: impact of hydraulic loading rate and media depth. Verma S; Daverey A; Sharma A Environ Sci Pollut Res Int; 2019 Nov; 26(33):34148-34156. PubMed ID: 30377959 [TBL] [Abstract][Full Text] [Related]
4. Organic carbon and ammonium nitrogen removal in a laboratory sand percolation filter. Rodgers M; Clifford E; Mulqueen J; Ballantyne P J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(9):2355-68. PubMed ID: 15478928 [TBL] [Abstract][Full Text] [Related]
5. Treatment of municipal wastewater in full-scale on-site sand filter reduces BOD efficiently but does not reach requirements for nitrogen and phosphorus removal. Laaksonen P; Sinkkonen A; Zaitsev G; Mäkinen E; Grönroos T; Romantschuk M Environ Sci Pollut Res Int; 2017 Apr; 24(12):11446-11458. PubMed ID: 28316046 [TBL] [Abstract][Full Text] [Related]
6. Effects of changing hydraulic and organic loading rates on pollutant reduction in bark, charcoal and sand filters treating greywater. Dalahmeh SS; Pell M; Hylander LD; Lalander C; Vinnerås B; Jönsson H J Environ Manage; 2014 Jan; 132():338-45. PubMed ID: 24342875 [TBL] [Abstract][Full Text] [Related]
7. Assessment of intermittently loaded woodchip and sand filters to treat dairy soiled water. Murnane JG; Brennan RB; Healy MG; Fenton O Water Res; 2016 Oct; 103():408-415. PubMed ID: 27494696 [TBL] [Abstract][Full Text] [Related]
8. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
9. Slow sand filtration of secondary clarifier effluent for wastewater reuse. Langenbach K; Kuschk P; Horn H; Kästner M Environ Sci Technol; 2009 Aug; 43(15):5896-901. PubMed ID: 19731694 [TBL] [Abstract][Full Text] [Related]
10. Organic carbon removal and nitrification of high strength wastewaters using stratified sand filters. Rodgers M; Healy MG; Mulqueen J Water Res; 2005 Sep; 39(14):3279-86. PubMed ID: 16005491 [TBL] [Abstract][Full Text] [Related]
11. Removal of organic pollutants and nutrients from olive mill wastewater by a sand filter. Achak M; Mandi L; Ouazzani N J Environ Manage; 2009 Jun; 90(8):2771-9. PubMed ID: 19406561 [TBL] [Abstract][Full Text] [Related]
12. The use of laboratory sand, soil and crushed-glass filter columns for polishing domestic-strength synthetic wastewater that has undergone secondary treatment. Healy MG; Burke P; Rodgers M J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Oct; 45(12):1635-41. PubMed ID: 20730656 [TBL] [Abstract][Full Text] [Related]
13. Different depth intermittent sand filters for laboratory treatment of synthetic wastewater with concentrations close to measured septic tank effluent. Rodgers M; Walsh G; Healy MG J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(1):80-5. PubMed ID: 21104498 [TBL] [Abstract][Full Text] [Related]
14. Pilot-scale, on-site investigation of crushed recycled glass as tertiary filter media for municipal lagoon wastewater treatment. Salzmann RD; Ackerman JN; Cicek N Environ Technol; 2022 Jan; 43(1):51-59. PubMed ID: 32463350 [No Abstract] [Full Text] [Related]
15. On-farm wastewater treatment using biochar from local agroresidues reduces pathogens from irrigation water for safer food production in developing countries. Kaetzl K; Lübken M; Uzun G; Gehring T; Nettmann E; Stenchly K; Wichern M Sci Total Environ; 2019 Sep; 682():601-610. PubMed ID: 31128373 [TBL] [Abstract][Full Text] [Related]
16. Ferrate as a coagulant prior to sand filters treating secondary wastewater effluent for reuse. Gaber O; Elbarki W; Fayed M; Aly SAA Water Sci Technol; 2024 Jul; 90(1):61-74. PubMed ID: 39007307 [TBL] [Abstract][Full Text] [Related]
17. Phosphorus attenuation and mobilization in sand filters treating onsite wastewater. Wang M; Zeng F; Chen S; Wehrmann LM; Waugh S; Brownawell BJ; Gobler CJ; Mao X Chemosphere; 2024 Sep; 364():143042. PubMed ID: 39117085 [TBL] [Abstract][Full Text] [Related]
18. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)? Escolà Casas M; Bester K Sci Total Environ; 2015 Feb; 506-507():315-22. PubMed ID: 25460965 [TBL] [Abstract][Full Text] [Related]
19. Reduction of phosphorus, nitrogen and microorganisms in pilot scale sand filter beds containing biotite, treating primary wastewater. Matikka V; Heinonen-Tanski H Environ Technol; 2016; 37(1):46-54. PubMed ID: 26118389 [TBL] [Abstract][Full Text] [Related]
20. Removal of PAHs, TSS, oils and fats from ammonium-rich coke wastewater by granular filtration. Jesús RI; Laura M; Yolanda FN; Beatriz SP J Environ Manage; 2024 May; 358():120812. PubMed ID: 38615397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]