These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26806829)

  • 1. Angiopoietin-like protein 2 and kidney fibrosis: lessons from knockout mice.
    Nishi H
    Kidney Int; 2016 Feb; 89(2):272-4. PubMed ID: 26806829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiopoietin-like protein 2 increases renal fibrosis by accelerating transforming growth factor-β signaling in chronic kidney disease.
    Morinaga J; Kadomatsu T; Miyata K; Endo M; Terada K; Tian Z; Sugizaki T; Tanigawa H; Zhao J; Zhu S; Sato M; Araki K; Iyama K; Tomita K; Mukoyama M; Tomita K; Kitamura K; Oike Y
    Kidney Int; 2016 Feb; 89(2):327-41. PubMed ID: 26806834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of angiopoietin-like proteins in angiogenesis and metabolism.
    Hato T; Tabata M; Oike Y
    Trends Cardiovasc Med; 2008 Jan; 18(1):6-14. PubMed ID: 18206803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiopoietins and angiopoietin-like proteins in angiogenesis.
    Morisada T; Kubota Y; Urano T; Suda T; Oike Y
    Endothelium; 2006; 13(2):71-9. PubMed ID: 16728326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Mesenchymal Stem Cells Transfected With Vascular Endothelial Growth Factor in Maintaining Renal Structure and Function in Rats with Unilateral Ureteral Obstruction.
    Ozbek E; Adas G; Otunctemur A; Duruksu G; Koc B; Polat EC; Kemik Sarvan A; Okcu A; Kamali G; Subasi C; Karaoz E
    Exp Clin Transplant; 2015 Jun; 13(3):262-72. PubMed ID: 25542189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect in Runx2 gene accelerates ureteral obstruction-induced kidney fibrosis via increased TGF-β signaling pathway.
    Kim JI; Jang HS; Jeong JH; Noh MR; Choi JY; Park KM
    Biochim Biophys Acta; 2013 Oct; 1832(10):1520-7. PubMed ID: 23639629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angiopoietin-like proteins: emerging targets for treatment of obesity and related metabolic diseases.
    Kadomatsu T; Tabata M; Oike Y
    FEBS J; 2011 Feb; 278(4):559-64. PubMed ID: 21182596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RAGE-mediated interstitial fibrosis in neonatal obstructive nephropathy is independent of NF-κB activation.
    Gasparitsch M; Arndt AK; Pawlitschek F; Oberle S; Keller U; Kasper M; Bierhaus A; Schaefer F; Weber LT; Lange-Sperandio B
    Kidney Int; 2013 Nov; 84(5):911-9. PubMed ID: 23677242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. COMP-angiopoietin-1 ameliorates renal fibrosis in a unilateral ureteral obstruction model.
    Kim W; Moon SO; Lee SY; Jang KY; Cho CH; Koh GY; Choi KS; Yoon KH; Sung MJ; Kim DH; Lee S; Kang KP; Park SK
    J Am Soc Nephrol; 2006 Sep; 17(9):2474-83. PubMed ID: 16885409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterozygous disruption of activin receptor-like kinase 1 is associated with increased renal fibrosis in a mouse model of obstructive nephropathy.
    Muñoz-Félix JM; López-Novoa JM; Martínez-Salgado C
    Kidney Int; 2014 Feb; 85(2):319-32. PubMed ID: 23945497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Roles of ANGPTL Families in Cancer Progression.
    Endo M
    J UOEH; 2019; 41(3):317-325. PubMed ID: 31548486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction.
    Livingston MJ; Ding HF; Huang S; Hill JA; Yin XM; Dong Z
    Autophagy; 2016 Jun; 12(6):976-98. PubMed ID: 27123926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiopoietin-like proteins--potential therapeutic targets for metabolic syndrome and cardiovascular disease.
    Oike Y; Tabata M
    Circ J; 2009 Dec; 73(12):2192-7. PubMed ID: 19875897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmin(ogen) promotes renal interstitial fibrosis by promoting epithelial-to-mesenchymal transition: role of plasmin-activated signals.
    Zhang G; Kernan KA; Collins SJ; Cai X; López-Guisa JM; Degen JL; Shvil Y; Eddy AA
    J Am Soc Nephrol; 2007 Mar; 18(3):846-59. PubMed ID: 17267741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiopoietin-related/angiopoietin-like proteins regulate angiogenesis.
    Oike Y; Yasunaga K; Suda T
    Int J Hematol; 2004 Jul; 80(1):21-8. PubMed ID: 15293564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ASK1/p38 signaling in renal tubular epithelial cells promotes renal fibrosis in the mouse obstructed kidney.
    Ma FY; Tesch GH; Nikolic-Paterson DJ
    Am J Physiol Renal Physiol; 2014 Dec; 307(11):F1263-73. PubMed ID: 25298527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mast cell chymase protects against renal fibrosis in murine unilateral ureteral obstruction.
    Beghdadi W; Madjene LC; Claver J; Pejler G; Beaudoin L; Lehuen A; Daugas E; Blank U
    Kidney Int; 2013 Aug; 84(2):317-26. PubMed ID: 23515052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tubular Overexpression of Angiopoietin-1 Attenuates Renal Fibrosis.
    Singh S; Manson SR; Lee H; Kim Y; Liu T; Guo Q; Geminiani JJ; Austin PF; Chen YM
    PLoS One; 2016; 11(7):e0158908. PubMed ID: 27454431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction.
    Sato M; Muragaki Y; Saika S; Roberts AB; Ooshima A
    J Clin Invest; 2003 Nov; 112(10):1486-94. PubMed ID: 14617750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA-196a/b Mitigate Renal Fibrosis by Targeting TGF-β Receptor 2.
    Meng J; Li L; Zhao Y; Zhou Z; Zhang M; Li D; Zhang CY; Zen K; Liu Z
    J Am Soc Nephrol; 2016 Oct; 27(10):3006-3021. PubMed ID: 26940097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.