These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26806856)

  • 1. Impact of particle elasticity on particle-based drug delivery systems.
    Anselmo AC; Mitragotri S
    Adv Drug Deliv Rev; 2017 Jan; 108():51-67. PubMed ID: 26806856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles.
    Jindal AB
    Int J Pharm; 2017 Oct; 532(1):450-465. PubMed ID: 28917985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting.
    Anselmo AC; Zhang M; Kumar S; Vogus DR; Menegatti S; Helgeson ME; Mitragotri S
    ACS Nano; 2015 Mar; 9(3):3169-77. PubMed ID: 25715979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of Soft Particles into Lipid Vesicles: Effects of Particle Size and Elasticity.
    Yi X; Gao H
    Langmuir; 2016 Dec; 32(49):13252-13260. PubMed ID: 27951715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elasticity regulates nanomaterial transport as delivery vehicles: Design, characterization, mechanisms and state of the art.
    Nie D; Liu C; Yu M; Jiang X; Wang N; Gan Y
    Biomaterials; 2022 Dec; 291():121879. PubMed ID: 36343607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of elasticity on the phagocytosis of micro/nanoparticles.
    Yao C; Akakuru OU; Stanciu SG; Hampp N; Jin Y; Zheng J; Chen G; Yang F; Wu A
    J Mater Chem B; 2020 Mar; 8(12):2381-2392. PubMed ID: 32100802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of particle size, shape, and stiffness in design of intravascular drug delivery systems: insights from computations, experiments, and nature.
    Sen Gupta A
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016; 8(2):255-70. PubMed ID: 26306941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The development of novel tumor targeting delivery strategy].
    Gao HL; Jiang XG
    Yao Xue Xue Bao; 2016 Feb; 51(2):272-80. PubMed ID: 29856581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological and mechanical determinants of cellular uptake of deformable nanoparticles.
    Chen L; Li X; Zhang Y; Chen T; Xiao S; Liang H
    Nanoscale; 2018 Jul; 10(25):11969-11979. PubMed ID: 29904774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle shape: a new design parameter for passive targeting in splenotropic drug delivery.
    Devarajan PV; Jindal AB; Patil RR; Mulla F; Gaikwad RV; Samad A
    J Pharm Sci; 2010 Jun; 99(6):2576-81. PubMed ID: 20091830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-spherical micro- and nanoparticles: fabrication, characterization and drug delivery applications.
    Mathaes R; Winter G; Besheer A; Engert J
    Expert Opin Drug Deliv; 2015 Mar; 12(3):481-92. PubMed ID: 25327886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Cell Membrane-cloaked Nanoparticle Elasticity on Nano-Bio Interaction.
    Yuan P; Chen X; Li X; Zong X; Yang C; Li Y; Xue W; Dai J
    Small Methods; 2023 Jun; 7(6):e2201548. PubMed ID: 36914575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale.
    Cooley M; Sarode A; Hoore M; Fedosov DA; Mitragotri S; Sen Gupta A
    Nanoscale; 2018 Aug; 10(32):15350-15364. PubMed ID: 30080212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano- and micro-based inhaled drug delivery systems for targeting alveolar macrophages.
    Lee WH; Loo CY; Traini D; Young PM
    Expert Opin Drug Deliv; 2015 Jun; 12(6):1009-26. PubMed ID: 25912721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in particle shape engineering for improved drug delivery.
    Yang Y; Nie D; Liu Y; Yu M; Gan Y
    Drug Discov Today; 2019 Feb; 24(2):575-583. PubMed ID: 30342244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of micro- and nanoparticle shape on biological processes.
    Hadji H; Bouchemal K
    J Control Release; 2022 Feb; 342():93-110. PubMed ID: 34973308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular delivery of polymeric nanocarriers: a matter of size, shape, charge, elasticity and surface composition.
    Agarwal R; Roy K
    Ther Deliv; 2013 Jun; 4(6):705-23. PubMed ID: 23738668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of Colloidal Particle Stiffness for the Exploration of Bio-Nano Interactions.
    Li M; Gao Z; Cui J
    Langmuir; 2022 Jun; 38(22):6780-6785. PubMed ID: 35617605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in physicochemical properties to consider in the design, evaluation and choice between microparticles and nanoparticles for drug delivery.
    Otto DP; Otto A; de Villiers MM
    Expert Opin Drug Deliv; 2015 May; 12(5):763-77. PubMed ID: 25516397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Delivery Particle Engineering Strategies for Shape-dependent Targeting of Cells and Tissues.
    Kozielski KL; Sitti M
    Curr Gene Ther; 2017; 17(2):80-88. PubMed ID: 28494739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.