BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26806951)

  • 21. Large scale preparation of nucleosomes containing site-specifically chemically modified histones lacking the core histone tail domains.
    Yang Z; Hayes JJ
    Methods; 2004 May; 33(1):25-32. PubMed ID: 15039084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineered Multivalent Sensors to Detect Coexisting Histone Modifications in Living Stem Cells.
    Delachat AM; Guidotti N; Bachmann AL; Meireles-Filho ACA; Pick H; Lechner CC; Deluz C; Deplancke B; Suter DM; Fierz B
    Cell Chem Biol; 2018 Jan; 25(1):51-56.e6. PubMed ID: 29174541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitation of nucleosome acetylation and other histone posttranslational modifications using microscale NU-ELISA.
    Dai B; Giardina C; Rasmussen TP
    Methods Mol Biol; 2013; 981():167-76. PubMed ID: 23381861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PRC2 engages a bivalent H3K27M-H3K27me3 dinucleosome inhibitor.
    Diehl KL; Ge EJ; Weinberg DN; Jani KS; Allis CD; Muir TW
    Proc Natl Acad Sci U S A; 2019 Oct; 116(44):22152-22157. PubMed ID: 31611394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A PRC2-dependent repressive role of PRDM14 in human embryonic stem cells and induced pluripotent stem cell reprogramming.
    Chan YS; Göke J; Lu X; Venkatesan N; Feng B; Su IH; Ng HH
    Stem Cells; 2013 Apr; 31(4):682-92. PubMed ID: 23280602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A modified epigenetics toolbox to study histone modifications on the nucleosome core.
    Frederiks F; Stulemeijer IJ; Ovaa H; van Leeuwen F
    Chembiochem; 2011 Jan; 12(2):308-13. PubMed ID: 21243718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF.
    Hamiche A; Kang JG; Dennis C; Xiao H; Wu C
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14316-21. PubMed ID: 11724935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global histone H3 lysine 27 triple methylation levels are reduced in vessels with advanced atherosclerotic plaques.
    Wierda RJ; Rietveld IM; van Eggermond MC; Belien JA; van Zwet EW; Lindeman JH; van den Elsen PJ
    Life Sci; 2015 May; 129():3-9. PubMed ID: 25445221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleosome-specific, time-dependent changes in histone modifications during activation of the early growth response 1 (Egr1) gene.
    Riffo-Campos ÁL; Castillo J; Tur G; González-Figueroa P; Georgieva EI; Rodríguez JL; López-Rodas G; Rodrigo MI; Franco L
    J Biol Chem; 2015 Jan; 290(1):197-208. PubMed ID: 25378406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global epiproteomic signatures distinguish embryonic stem cells from differentiated cells.
    Dai B; Rasmussen TP
    Stem Cells; 2007 Oct; 25(10):2567-74. PubMed ID: 17641388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of post-translational modifications on native intact nucleosomes by ELISA.
    Dai B; Dahmani F; Cichocki JA; Swanson LC; Rasmussen TP
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21540828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context.
    Ng MK; Cheung P
    Biochem Cell Biol; 2016 Feb; 94(1):33-42. PubMed ID: 26197985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic and stable histone H3 methylation patterns at the Arabidopsis FLC and AP1 loci.
    Saleh A; Alvarez-Venegas R; Avramova Z
    Gene; 2008 Oct; 423(1):43-7. PubMed ID: 18638531
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A synthetic biology approach to probing nucleosome symmetry.
    Ichikawa Y; Connelly CF; Appleboim A; Miller TC; Jacobi H; Abshiru NA; Chou HJ; Chen Y; Sharma U; Zheng Y; Thomas PM; Chen HV; Bajaj V; Müller CW; Kelleher NL; Friedman N; Bolon DN; Rando OJ; Kaufman PD
    Elife; 2017 Sep; 6():. PubMed ID: 28895528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bivalent histone modifications in early embryogenesis.
    Vastenhouw NL; Schier AF
    Curr Opin Cell Biol; 2012 Jun; 24(3):374-86. PubMed ID: 22513113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-canonical bivalent H3K4me3K9me3 recognition by Spindlin1/C11orf84 complex.
    Du Y; Qian C
    Bioessays; 2022 Apr; 44(4):e2100229. PubMed ID: 35092310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana.
    Kim JM; To TK; Ishida J; Morosawa T; Kawashima M; Matsui A; Toyoda T; Kimura H; Shinozaki K; Seki M
    Plant Cell Physiol; 2008 Oct; 49(10):1580-8. PubMed ID: 18779215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reading signals on the nucleosome with a new nomenclature for modified histones.
    Turner BM
    Nat Struct Mol Biol; 2005 Feb; 12(2):110-2. PubMed ID: 15702071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleosome competition reveals processive acetylation by the SAGA HAT module.
    Ringel AE; Cieniewicz AM; Taverna SD; Wolberger C
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):E5461-70. PubMed ID: 26401015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation, functions and transmission of bivalent chromatin during mammalian development.
    Macrae TA; Fothergill-Robinson J; Ramalho-Santos M
    Nat Rev Mol Cell Biol; 2023 Jan; 24(1):6-26. PubMed ID: 36028557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.