BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26806951)

  • 41. Regulation, functions and transmission of bivalent chromatin during mammalian development.
    Macrae TA; Fothergill-Robinson J; Ramalho-Santos M
    Nat Rev Mol Cell Biol; 2023 Jan; 24(1):6-26. PubMed ID: 36028557
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb.
    Pengelly AR; Copur Ö; Jäckle H; Herzig A; Müller J
    Science; 2013 Feb; 339(6120):698-9. PubMed ID: 23393264
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bivalent Regulation and Related Mechanisms of H3K4/27/9me3 in Stem Cells.
    Sun H; Wang Y; Wang Y; Ji F; Wang A; Yang M; He X; Li L
    Stem Cell Rev Rep; 2022 Jan; 18(1):165-178. PubMed ID: 34417934
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crystal structure of the nucleosome containing histone H3 with crotonylated lysine 122.
    Suzuki Y; Horikoshi N; Kato D; Kurumizaka H
    Biochem Biophys Res Commun; 2016 Jan; 469(3):483-9. PubMed ID: 26694698
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Global and gene-specific histone modification profiles of mouse multipotent adult germline stem cells.
    Khromov T; Pantakani DV; Nolte J; Wolf M; Dressel R; Engel W; Zechner U
    Mol Hum Reprod; 2011 Mar; 17(3):166-74. PubMed ID: 20935159
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Examining histone modification crosstalk using immobilized libraries established from ligation-ready nucleosomes.
    Aparicio Pelaz D; Yerkesh Z; Kirchgäßner S; Mahler H; Kharchenko V; Azhibek D; Jaremko M; Mootz HD; Jaremko Ł; Schwarzer D; Fischle W
    Chem Sci; 2020 Aug; 11(34):9218-9225. PubMed ID: 34123170
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reconstitution of Nucleosomes with Differentially Isotope-labeled Sister Histones.
    Liokatis S
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28447979
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Histone H4 asymmetrically dimethylated at arginine 3 (H4R3me2a), a mark of super-enhancers.
    Sudhakar SRN; Wu L; Patel S; Zovoilis A; Davie JR
    Biochem Cell Biol; 2024 Apr; 102(2):145-158. PubMed ID: 38011682
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Traceless semisynthesis of a set of histone 3 species bearing specific lysine methylation marks.
    Chen Z; Grzybowski AT; Ruthenburg AJ
    Chembiochem; 2014 Sep; 15(14):2071-5. PubMed ID: 25155436
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Visualization of multivalent histone modification in a single cell reveals highly concerted epigenetic changes on differentiation of embryonic stem cells.
    Hattori N; Niwa T; Kimura K; Helin K; Ushijima T
    Nucleic Acids Res; 2013 Aug; 41(15):7231-9. PubMed ID: 23761442
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crosstalk Between DNA and Histones: Tet's New Role in Embryonic Stem Cells.
    Sui X; Price C; Li Z; Chen J
    Curr Genomics; 2012 Dec; 13(8):603-8. PubMed ID: 23730200
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PHF1 Tudor and N-terminal domains synergistically target partially unwrapped nucleosomes to increase DNA accessibility.
    Gibson MD; Gatchalian J; Slater A; Kutateladze TG; Poirier MG
    Nucleic Acids Res; 2017 Apr; 45(7):3767-3776. PubMed ID: 28082396
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bivalent chromatin marks developmental regulatory genes in the mouse embryonic germline in vivo.
    Sachs M; Onodera C; Blaschke K; Ebata KT; Song JS; Ramalho-Santos M
    Cell Rep; 2013 Jun; 3(6):1777-84. PubMed ID: 23727241
    [TBL] [Abstract][Full Text] [Related]  

  • 54. H3K27me3-H3K4me1 transition at bivalent promoters instructs lineage specification in development.
    Yu Y; Li X; Jiao R; Lu Y; Jiang X; Li X
    Cell Biosci; 2023 Mar; 13(1):66. PubMed ID: 36991495
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of histone post-translational modification patterns based on nascent transcription data.
    Wang Z; Chivu AG; Choate LA; Rice EJ; Miller DC; Chu T; Chou SP; Kingsley NB; Petersen JL; Finno CJ; Bellone RR; Antczak DF; Lis JT; Danko CG
    Nat Genet; 2022 Mar; 54(3):295-305. PubMed ID: 35273399
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A General Method to Edit Histone H3 Modifications on Chromatin Via Sortase-Mediated Metathesis.
    Yang Q; Gao Y; Liu X; Xiao Y; Wu M
    Angew Chem Int Ed Engl; 2022 Dec; 61(52):e202209945. PubMed ID: 36305862
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mathematical modeling of histone modifications reveals the formation mechanism and function of bivalent chromatin.
    Zhao W; Qiao L; Yan S; Nie Q; Zhang L
    iScience; 2021 Jul; 24(7):102732. PubMed ID: 34278251
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthetic Modifications of Histones and Their Functional Evaluation.
    Toyobe M; Yakushiji F
    Chem Asian J; 2022 Jul; 17(13):e202200197. PubMed ID: 35489041
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-molecule decoding of combinatorially modified nucleosomes.
    Shema E; Jones D; Shoresh N; Donohue L; Ram O; Bernstein BE
    Science; 2016 May; 352(6286):717-21. PubMed ID: 27151869
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bivalent chromatin: a developmental balancing act tipped in cancer.
    Glancy E; Choy N; Eckersley-Maslin MA
    Biochem Soc Trans; 2024 Feb; 52(1):217-229. PubMed ID: 38385532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.